Potential biomarkers and targets of mitochondrial dynamics.

Clin Transl Med

Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, China.

Published: August 2021

Mitochondrial dysfunction contributes to the imbalance of cellular homeostasis and the development of diseases, which is regulated by mitochondria-associated factors. The present review aims to explore the process of the mitochondrial quality control system as a new source of the potential diagnostic biomarkers and/or therapeutic targets for diseases, including mitophagy, mitochondrial dynamics, interactions between mitochondria and other organelles (lipid droplets, endoplasmic reticulum, endosomes, and lysosomes), as well as the regulation and posttranscriptional modifications of mitochondrial DNA/RNA (mtDNA/mtRNA). The direct and indirect influencing factors were especially illustrated in understanding the interactions among regulators of mitochondrial dynamics. In addition, mtDNA/mtRNAs and proteomic profiles of mitochondria in various lung diseases were also discussed as an example. Thus, alternations of mitochondria-associated regulators can be a new category of biomarkers and targets for disease diagnosis and therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351522PMC
http://dx.doi.org/10.1002/ctm2.529DOI Listing

Publication Analysis

Top Keywords

mitochondrial dynamics
12
biomarkers targets
8
mitochondrial
6
potential biomarkers
4
targets mitochondrial
4
dynamics mitochondrial
4
mitochondrial dysfunction
4
dysfunction contributes
4
contributes imbalance
4
imbalance cellular
4

Similar Publications

Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects.

View Article and Find Full Text PDF

The underlying mechanisms explaining the differential course of SARS-CoV-2 infection and the potential clinical consequences after COVID-19 resolution have not been fully elucidated. As a dysregulated mitochondrial activity could impair the immune response, we explored long-lasting changes in mitochondrial functionality, circulating cytokine levels, and metabolomic profiles of infected individuals after symptoms resolution, to evaluate whether a complete recovery could be achieved. Results of this pilot study evidenced that different parameters of aerobic respiration in lymphocytes of individuals recuperated from a severe course lagged behind those shown upon mild COVID-19 recovery, in basal conditions and after simulated reinfection, and they also showed altered glycolytic capacity.

View Article and Find Full Text PDF

Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.

View Article and Find Full Text PDF
Article Synopsis
  • The transmembrane potential is crucial for cellular functions like signaling and energy production, with Rhodamine voltage reporters (RhoVRs) serving as small, non-invasive sensors that can detect voltage changes, especially in mitochondria.
  • Extensive simulations and free-energy calculations revealed that the orientation of RhoVRs relative to membranes, influenced by their polarized functional groups, significantly impacts their voltage sensitivity and localization within cells.
  • The study's findings on the relationship between the chemical structure of RhoVRs and their membrane behavior offer valuable insights for designing fluorescent dyes that better detect voltage changes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!