YAP activation attenuates toxicarioside G‑induced lethal autophagy arrest in SW480 colorectal cancer cells.

Oncol Rep

Key Laboratory of Tropical Translational Medicine of The Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China.

Published: October 2021

Toxicarioside G (TCG), a natural product isolated from , has been found to exhibit potent anticancer effects. The present study aimed to investigate the effect of TCG on the SW480 colorectal cancer cell line and the role of autophagy and Yes1 associated transcriptional regulator (YAP) in the TCG‑mediated inhibition of cell proliferation and viability. Cell proliferation was detected using MTT, BrdU, colony formation and LDH release assays, while apoptosis was analyzed using flow cytometry and western blot analyses. Immunofluorescence and western blot analysis was used to determine TCG‑induced autophagy and YAP activation. Pharmacological inhibition and siRNA was used to investigate the role of autophagy and YAP in TCG‑mediated cell growth inhibition. The results revealed that TCG inhibited SW480 cell proliferation and viability, independent of apoptosis, and also induced autophagy. It was further demonstrated that TCG blocks autophagic flux, resulting in autophagy arrest in the SW480 cell line. The inhibition of autophagy restored the TCG‑mediated inhibition of cell proliferation and viability, suggesting that TCG may induce lethal autophagy arrest in the SW480 cell line. Furthermore, TCG induced YAP activation in the SW480 cell line. Inhibition of YAP activity enhanced the TCG‑mediated inhibition of cell proliferation and viability, suggesting that YAP may play a protective role in the TCG‑induced effects. In conclusion, the findings of the present study indicated that TCG may induce lethal autophagy arrest and activate YAP, which serves a protective role in the SW480 cell line. These results suggested that the combined targeting of TCG and YAP may represent a promising strategy for TCG‑mediated anticancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424488PMC
http://dx.doi.org/10.3892/or.2021.8175DOI Listing

Publication Analysis

Top Keywords

cell proliferation
20
sw480 cell
20
autophagy arrest
16
proliferation viability
16
yap activation
12
lethal autophagy
12
arrest sw480
12
tcg‑mediated inhibition
12
inhibition cell
12
cell
11

Similar Publications

Mechanisms and new advances in the efficacy of plant active ingredients in tendon-bone healing.

J Orthop Surg Res

January 2025

The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China.

The tendon-bone interface, known as the tenosynovial union or attachment, can be easily damaged by excessive exercise or trauma. Tendon-bone healing is a significant research topic in orthopedics, encompassing various aspects of sports injuries and postoperative recovery. Surgery is the most common treatment; however, it has limited efficacy in promoting tendon-bone healing and carries a risk of postoperative recurrence, necessitating the search for more effective treatments.

View Article and Find Full Text PDF

Extracellular matrix stiffness regulates colorectal cancer progression via HSF4.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.

Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.

Methods: This study included 107 CRC patients.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

Mechanistic insights and approaches for beta cell regeneration.

Nat Chem Biol

January 2025

Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.

Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms.

View Article and Find Full Text PDF

Role of PGC-1α in the proliferation and metastasis of malignant tumors.

J Mol Histol

January 2025

Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.

Malignant tumors are among the major diseases threatening human survival in the world, and advancements in medical technology have led to a steady increase in their detection rates worldwide. Despite unique clinical presentations across the spectrum of malignancies, treatment modalities generally adhere to common strategies, encompassing primarily surgical intervention, radiation therapy, chemotherapy, and targeted treatments. Uncovering the genetic elements contributing to cancer cell proliferation, metastasis, and drug resistance remains a pivotal pursuit in the development of novel targeted therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!