Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reactive oxygen species (ROS) are implicated in endothelial dysfunction and cardiovascular disease. Endothelial cells (ECs) produce most ATP through glycolysis rather than oxidative phosphorylation; thus mitochondrial ROS production is lower than in other cell types. This makes quantification of changes in EC mitochondrial oxidative status challenging. Here, we present an optimized protocol using mitochondrial-targeted adenovirus-based redox sensor for ratiometric quantification of specific changes in mitochondrial ROS in live human coronary artery EC. For complete details on the use and execution of this protocol, please refer to Waypa et al (2010); Liao et al. (2020); Gao et al (2021).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377591 | PMC |
http://dx.doi.org/10.1016/j.xpro.2021.100753 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!