Fibroblast growth factor (FGF) 23 produced by the bone is the principal hormone to regulate serum phosphate level. Serum FGF23 needs to be tightly regulated to maintain serum phosphate in a narrow range. Thus, we hypothesized that the bone has some phosphate-sensing mechanism to regulate the production of FGF23. Previously we showed that extracellular phosphate induces the phosphorylation of FGF receptor 1 (FGFR1) and FGFR1 signaling regulates the expression of , whose product works to increase FGF23 production . In this study, we show the significance of FGFR1 in the regulated FGF23 production and serum phosphate level . We generated late-osteoblast/osteocyte-specific -knockout mice ( ) by crossing the and the floxed mouse lines. We evaluated serum phosphate and FGF23 levels, the expression of in the bone, the body weight and life span. A selective ablation of aborted the increase of serum active full-length FGF23 and the enhanced expression of in the bone by a high phosphate diet. These mice showed more pronounced hyperphosphatemia compared with control mice. In addition, these mice fed with a control diet showed body weight loss after 23 weeks of age and shorter life span. These results reveal a novel significance of FGFR1 signaling in the phosphate metabolism and normal life span.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379418 | PMC |
http://dx.doi.org/10.1016/j.bbrep.2021.101107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!