This dataset describes the outcome of a laboratory trichloroethene (TCE) treatability experiment with liquid activated carbon and bioamendments. The treatability experiment included unamended microcosms, bioamended microcosms with a containing culture and electron donor, and bioamended microcosms including liquid activated carbon (PlumeStop®). Data were collected frequently over an 85-day experimental period. Data were collected for the following parameters: redox sensitive species, chlorinated ethenes, non-chlorinated end-products, electron donors, compound specific isotopes, specific bacteria and functional genes. The reductive dechlorination of TCE could be described by a carbon isotope enrichment factor (ε) of -7.1 ‰. In the amended systems, the degradation rates for the TCE degradation were 0.08-0.13 d and 0.05-0.09 d determined by concentrations and isotope fractionation, respectively. Dechlorination of cis-DCE was limited. This dataset assisted in identifying the impact of different bioamendments and activated carbon on biodegradation of chlorinated ethenes. The dataset is useful in optimising design and setup for future laboratory and field investigations. This study provides novel information on the effect of low dose liquid activated carbon on chlorinated ethenes degradation by applying isotopic and microbial techniques, and by linking the outcome to a field case study. The data presented in this article are related to the research article "Assessment of chlorinated ethenes degradation after field scale injection of activated carbon and bioamendments: Application of isotopic and microbial analyses" (Ottosen et al., 2021).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379289PMC
http://dx.doi.org/10.1016/j.dib.2021.107291DOI Listing

Publication Analysis

Top Keywords

activated carbon
24
chlorinated ethenes
20
treatability experiment
12
carbon bioamendments
12
liquid activated
12
biodegradation chlorinated
8
ethenes dataset
8
bioamended microcosms
8
data collected
8
ethenes degradation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!