Identifying 3-D spatiotemporal skin deformation cues evoked in interacting with compliant elastic surfaces.

IEEE Haptics Symp

School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA.

Published: March 2020

We regularly touch soft, compliant fruits and tissues. To help us discriminate them, we rely upon cues embedded in spatial and temporal deformation of finger pad skin. However, we do not yet understand, in touching objects of various compliance, how such patterns evolve over time, and drive perception. Using a 3-D stereo imaging technique in passive touch, we develop metrics for quantifying skin deformation, across compliance, displacement, and time. The metrics map 2-D estimates of terminal contact area to 3-D metrics that represent spatial and temporal changes in penetration depth, surface curvature, and force. To do this, clouds of thousands of 3-D points are reduced in dimensionality into stacks of ellipses, to be more readily comparable between participants and trials. To evaluate the robustness of the derived 3-D metrics, human subjects experiments are performed with stimulus pairs varying in compliance and discriminability. The results indicate that metrics such as penetration depth and surface curvature can distinguish compliances earlier, at less displacement. Observed also are distinct modes of skin deformation, for contact with stiffer objects, versus softer objects that approach the skin's compliance. These observations of the skin's deformation may guide the design and control of haptic actuation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395532PMC
http://dx.doi.org/10.1109/haptics45997.2020.ras.hap20.22.5a9b38d8DOI Listing

Publication Analysis

Top Keywords

skin deformation
12
spatial temporal
8
3-d metrics
8
penetration depth
8
depth surface
8
surface curvature
8
deformation
5
metrics
5
identifying 3-d
4
3-d spatiotemporal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!