Charging Up the Periphery: Glial Ionic Regulation in Sensory Perception.

Front Cell Dev Biol

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

Published: August 2021

The peripheral nervous system (PNS) receives diverse sensory stimuli from the environment and transmits this information to the central nervous system (CNS) for subsequent processing. Thus, proper functions of cells in peripheral sense organs are a critical gate-keeper to generating appropriate animal sensory behaviors, and indeed their dysfunction tracks sensory deficits, sensorineural disorders, and aging. Like the CNS, the PNS comprises two major cell types, neurons (or sensory cells) and glia (or glia-like supporting neuroepithelial cells). One classic function of PNS glia is to modulate the ionic concentration around associated sensory cells. Here, we review current knowledge of how non-myelinating support cell glia of the PNS regulate the ionic milieu around sensory cell endings across species and systems. Molecular studies reviewed here suggest that, rather than being a passive homeostatic response, glial ionic regulation may in fact actively modulate sensory perception, implying that PNS glia may be active contributors to sensorineural information processing. This is reminiscent of emerging studies suggesting analogous roles for CNS glia in modulating neural circuit processing. We therefore suggest that deeper molecular mechanistic investigations into critical PNS glial functions like ionic regulation are essential to comprehensively understand sensorineural health, disease, and aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385785PMC
http://dx.doi.org/10.3389/fcell.2021.687732DOI Listing

Publication Analysis

Top Keywords

ionic regulation
12
glial ionic
8
sensory
8
sensory perception
8
nervous system
8
sensory cells
8
pns glia
8
pns
6
ionic
5
glia
5

Similar Publications

Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells.

Materials (Basel)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.

Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.

View Article and Find Full Text PDF

Brassinosteroid Enhances Cucumber Stress Tolerance to NaHCO by Modulating Nitrogen Metabolism, Ionic Balance and Phytohormonal Response.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Under NaHCO stress, exogenous 24-epibrassinolide (EBR) markedly alleviated Na accumulation in cucumber plants, thereby decreasing the Na/K, Na/Mg, and Na/Ca ratios. This mitigation was accompanied by elevated concentrations of K, Ca, and Mg, as well as enhanced expression of the and genes. In addition, the activities of plasma membrane H-ATPase, vesicular membrane H-ATPase, and vesicular membrane H-PPase were significantly increased, contributing to the maintenance of ionic balance in cucumber plants.

View Article and Find Full Text PDF

Membranes have been used as versatile tools for the separation of various natural products; however, the selective separation of structural analogs of natural products using membranes remains challenging. In this study, biocomposite membranes based on poly(ionic liquids) and different natural fibers (jute, cotton, or wool) were successfully prepared. Natural fibers can regulate the microstructure and improve the mechanical properties of membranes.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Cinnamon essential oil has gained widespread attention in the food industry as a safe and effective preservative. However, its low water solubility and high volatility limit its application in food, making the use of natural emulsifiers for its emulsification an increasingly popular focus of research. This study focuses on the extraction of galactomannan-rich aqueous extracts from Gleditsia sinensis seeds using a low-energy, low-pollution microwave-assisted method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!