Finite Element (FE) modelling of spinal cord response to impact can provide unique insights into the neural tissue response and injury risk potential. Yet, contemporary human body models (HBMs) used to examine injury risk and prevention across a wide range of impact scenarios often lack detailed integration of the spinal cord and surrounding tissues. The integration of a spinal cord in contemporary HBMs has been limited by the need for a continuum-level model owing to the relatively large element size required to be compatible with HBM, and the requirement for model development based on published material properties and validation using relevant non-linear material data. The goals of this study were to develop and assess non-linear material model parameters for the spinal cord parenchyma and pia mater, and incorporate these models into a continuum-level model of the spinal cord with a mesh size conducive to integration in HBM. First, hyper-viscoelastic material properties based on tissue-level mechanical test data for the spinal cord and hyperelastic material properties for the pia mater were determined. Secondly, the constitutive models were integrated in a spinal cord segment FE model validated against independent experimental data representing transverse compression of the spinal cord-pia mater complex (SCP) under quasi-static indentation and dynamic impact loading. The constitutive model parameters were fit to a quasi-linear viscoelastic model with an Ogden hyperelastic function, and then verified using single element test cases corresponding to the experimental strain rates for the spinal cord (0.32-77.22 s) and pia mater (0.05 s). Validation of the spinal cord model was then performed by re-creating, in an explicit FE code, two independent experimental setups: 1) transverse indentation of a porcine spinal cord-pia mater complex and 2) dynamic transverse impact of a bovine SCP. The indentation model accurately matched the experimental results up to 60% compression of the SCP, while the impact model predicted the loading phase and the maximum deformation (within 7%) of the SCP experimental data. This study quantified the important biomechanical contribution of the pia mater tissue during spinal cord deformation. The validated material models established in this study can be implemented in computational HBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387872 | PMC |
http://dx.doi.org/10.3389/fbioe.2021.693120 | DOI Listing |
Sci Rep
December 2024
Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.
View Article and Find Full Text PDFSci Rep
December 2024
Radiology Department, Children's Hospital of Chongqing Medical University, Yuzhong District Zhongshan 2 Road 136#, Chongqing, 400014, China.
This study aimed to identify imaging risk factors for spinal cord injury without radiologic abnormalities (SCIWORA) in children. We retrospectively analyzed the medical records and magnetic resonance imaging (MRI) findings of children with SCIWORA admitted to our hospital between January 1, 2012, and September 30, 2022. Univariate and binary logistic regression analyses were used to evaluate the prognostic impact of various factors including MRI type, maximum cross-sectional area of spinal cord injury, injury length, injury signal intensity ratio.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
Visual hallucinations (VH) and pareidolia, a type of minor hallucination, share common underlying mechanisms. However, the similarities and differences in their brain regions remain poorly understood in Parkinson's disease (PD). A total of 104 drug-naïve PD patients underwent structural MRI and were assessed for pareidolia using the Noise Pareidolia Test (NPT) were enrolled.
View Article and Find Full Text PDFWorld Neurosurg
December 2024
Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:
J Pediatr Surg
December 2024
Children's Hospital New Orleans, Department of Surgery, New Orleans LA 70118, USA; Louisiana State University Health Sciences Center, Department of Surgery, Division of Pediatric Surgery, New Orleans LA 70112, USA. Electronic address:
Introduction: Traumatic injury is the leading cause of pediatric mortality and morbidity in the United States. While behavioral impairments of children after traumatic brain injury (TBI) have been described, outcomes following traumatic spinal cord injury (SCI) and multi-trauma (MT) are less known. We aimed to address the prevalence of behavioral and neuropsychiatric disorders in pediatric and adolescent trauma patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!