Analytical optimization of the cutting efficiency for generic cavitation bubbles.

Biomed Opt Express

SCHWIND eye-tech-solutions, Kleinostheim, D- 63801, Germany.

Published: July 2021

A theoretical method to determine the optimum laser parameters for maximizing the cutting efficiency for different materials (in particular human cornea) is proposed. The model is simple and reduced to laser beam characteristics and cavitation properties. The model further provides a method to convert energy fluctuations during the cutting process to equivalent deviations in the cavitation bubbles. The proposed model can be used for calibration, verification and validation purposes of laser systems used for cutting processes at relatively low cost and may improve the quality of the results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367260PMC
http://dx.doi.org/10.1364/BOE.425895DOI Listing

Publication Analysis

Top Keywords

cutting efficiency
8
cavitation bubbles
8
proposed model
8
analytical optimization
4
cutting
4
optimization cutting
4
efficiency generic
4
generic cavitation
4
bubbles theoretical
4
theoretical method
4

Similar Publications

This research addresses the gap in efficient thawing methods by investigating the effects of ohmic thawing variables and freezing methods on the thawing speed and quality attributes of ground turkey breast, aiming to identify the optimal ohmic thawing method and compare it with traditional air and water thawing techniques. The variables for ohmic thawing consisted of voltage gradient (10, 15, and 20 V/cm), freezing method (Snap (rapid freezing of samples in liquid nitrogen at -210 °C), -70, and -20 °C), and probe type. The results showed that the snap-freezing method demonstrated superior functional and quality characteristics.

View Article and Find Full Text PDF

Optimizing woodcutting with zirconia-toughened alumina: Processing, performance, and industrial insights.

Heliyon

January 2025

Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for High Performance Ceramics, 8600, Dübendorf, CH, Switzerland.

Since the 1950s, the woodcutting industry has relied heavily on tungsten carbide (WC) cutting tools to overcome the challenges posed by the complex structure of wood, including hard knots and abrasive elements such as sand and tannic acids. These demands require cutting tools with superior thermal conductivity and mechanical properties. However, the rising cost of WC materials has prompted the search for alternative solutions.

View Article and Find Full Text PDF

Enhanced energy storage in antiferroelectrics via antipolar frustration.

Nature

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Dielectric-based energy storage capacitors characterized with fast charging and discharging speed and reliability play a vital role in cutting-edge electrical and electronic equipment. In pursuit of capacitor miniaturization and integration, dielectrics must offer high energy density and efficiency. Antiferroelectrics with antiparallel dipole configurations have been of significant interest for high-performance energy storage due to their negligible remanent polarization and high maximum polarization in the field-induced ferroelectric state.

View Article and Find Full Text PDF

Goose multi-omics database: A comprehensive multi-omics database for goose genomics.

Poult Sci

January 2025

Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Rongchang District, Chongqing 402460, PR China. Electronic address:

Multi-omics has helped elucidate the gene expression patterns and genomic variations closely associated with economically significant traits in geese. Despite the substantial genomic data generated through extensive goose studies, a unified platform for integrating these datasets is lacking. To address this gap, we introduced the Goose Multi-omics Database (GMD), which is accessible at http://goosedb.

View Article and Find Full Text PDF

Unlocking biochar impacts on abiotic stress dynamics: a systematic review of soil quality and crop improvement.

Front Plant Sci

January 2025

Horticultural and Herbal Crop Environment Division, Soil Management Laboratory, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea.

Global agricultural challenges, especially soil degradation caused by abiotic stresses, significantly reduce crop productivity and require innovative solutions. Biochar (BC), a biodegradable product derived from agricultural and forestry residues, has been proven to significantly enhance soil quality. Although its benefits for improving soil properties are well-documented, the potential of BC to mitigate various abiotic stresses-such as drought, salinity, and heavy metal toxicity-and its effect on plant traits need further exploration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!