Background: Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies with a poor prognosis, and its treatment remains a great challenge. Dihydrotanshinone I (DHTS) has been reported to exert antitumor effect in many cancers. However, the role of DHTS in ESCC remains unclear.

Aim: To investigate the antitumor effect of DHTS in ESCC and the underlying mechanisms.

Methods: CCK-8 assay and cell cycle analysis were used to detect proliferation and cell cycle in ESCC cells. Annexin V-PE/7-AAD double staining assay and Hoechst 33258 staining were used to detect apoptosis in ESCC cells. Western blot was used to detect the expression of proteins associated with the mitochondrial pathway. Immunofluorescence was used to detect the expression of phosphorylated STAT3 (pSTAT3) in DHTS-treated ESCC cells. ESCC cells with STAT3 knockdown and overexpression were constructed to verify the role of STAT3 in DHTS induced apoptosis. A xenograft tumor model in nude mice was used to evaluate the antitumor effect of DHTS .

Results: After treatment with DHTS, the proliferation of ESCC cells was inhibited in a dose- and time-dependent manner. Moreover, DHTS induced cell cycle arrest in the G0/1 phase. Annexin V-PE/7-AAD double staining assay and Hoechst 33258 staining revealed that DHTS induced obvious apoptosis in KYSE30 and Eca109 cells. At the molecular level, DHTS treatment reduced the expression of pSTAT3 and anti-apoptotic proteins, while increasing the expression of pro-apoptotic proteins in ESCC cells. STAT3 knockdown in ESCC cells markedly promoted the activation of the mitochondrial pathway while STAT3 overexpression blocked the activation of the mitochondrial pathway. Additionally, DHTS inhibited tumor cell proliferation and induced apoptosis in a xenograft tumor mouse model.

Conclusion: DHTS exerts antitumor effect in ESCC STAT3-mediated activation of the mitochondrial pathway. DHTS may be a novel therapeutic agent for ESCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371523PMC
http://dx.doi.org/10.4251/wjgo.v13.i8.893DOI Listing

Publication Analysis

Top Keywords

escc cells
28
mitochondrial pathway
20
activation mitochondrial
16
escc
12
dhts
12
cell cycle
12
dhts induced
12
cells
9
stat3-mediated activation
8
esophageal squamous
8

Similar Publications

Esophageal squamous cell carcinoma (ESCC) is one of the main subtypes of esophageal carcinoma with high morbidity. This study aimed to explore the role of FKBP prolyl isomerase 11 (FKBP11) in ESCC and investigate the underlying mechanism. FKBP11 levels in ESCC tumor tissues and cell lines were measured.

View Article and Find Full Text PDF

Background: Esophageal cancer has a poor prognosis despite treatment advancements. Although the benefit of neoadjuvant chemoradiotherapy (CRT) followed by adjuvant immunotherapy is evident, the effects of CRT on PD-L1 expression in esophageal cancer are not well understood. This study examines the impact of neoadjuvant CRT on PD-L1 surface expression in esophageal cancer both and considering its implications for immunotherapy.

View Article and Find Full Text PDF

A-to-I-Edited miR-1304-3p Inhibits Glycolysis and Tumor Growth of Esophageal Squamous Cell Carcinoma by Inactivating Wnt5a/ROR2 Signaling.

Mol Carcinog

January 2025

Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.

A-to-I RNA editing is a pervasive mechanism in the human genome that affects the regulation of gene expression and is closely associated with the pathogenesis of numerous diseases. This study elucidates the regulatory mechanism of A-to-I edited miR-1304-3p in esophageal squamous cell carcinoma (ESCC). Western blot, immunohistochemistry, and RT-qPCR assays were employed to quantify protein and mRNA expression.

View Article and Find Full Text PDF

RTN4IP1 Contributes to ESCC via Regulation of Amino Acid Transporters.

Adv Sci (Weinh)

January 2025

Department of Pathophysiology, School of Basic Medical Sciences, The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, State Key Laboratory of Esophageal, Cancer Prevention and Treatment, Provincial Cooperative Innovation Center for Cancer Chemoprevention, China-US (Henan) Hormel Cancer Institute, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450000, China.

Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of esophageal cancer cases. The lack of effective therapeutic targets makes it difficult to improve the overall survival of patients with ESCC. Reticulon 4 Interacting Protein 1 (RTN4IP1) is a novel mitochondrial oxidoreductase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!