Photoperiod-regulated floral transition is vital to the flowering plant. "Xiangfei" is a flowering ornamental plant with high development potential economically and is a short-day woody perennial. However, the genetic regulation of short-day-induced floral transition in is unclear. To systematically research the responses of during this process, dynamic changes in morphology, physiology, and transcript levels were observed and identified in different developmental stages of long-day- and short-day-treated plants. We found that floral transition in occurred 10 d after short-day induction, but flower bud differentiation did not occur at any stage under long-day conditions. A total of 1,226 differentially expressed genes were identified, of which 146 genes were associated with flowering pathways of sugar, phytohormones, photoperiod, ambient temperature, and aging signals, as well as floral integrator and meristem identity genes. The trehalose-6-phosphate signal positively modulated floral transition by interacting with SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 4 (SPL4) in the aging pathway. Endogenous gibberellin, abscisic acid, cytokinin, and jasmonic acid promoted floral transition, whereas strigolactone inhibited it. In the photoperiod pathway, FD, CONSTANS-LIKE 12, and nuclear factors Y positively controlled floral transition, whereas PSEUDO-RESPONSE REGULATOR 7, FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1, and LUX negatively regulated it. SPL4 and pEARLI1 positively affected floral transition. Suppressor of Overexpression of Constans 1 and AGAMOUSLIKE24 integrated multiple flowering signals to modulate the expression of /, , , , , and , thereby regulating floral transition. Finally, we propose a regulatory network model for short-day-induced floral transition in . This study improves our understanding of flowering time regulation in and provides knowledge for its production and commercialization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385556 | PMC |
http://dx.doi.org/10.3389/fpls.2021.715683 | DOI Listing |
Plants (Basel)
December 2024
Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia.
Flowering is initiated in response to environmental cues, with the photoperiod and ambient temperature being the main ones. The regulatory pathways underlying floral transition are well studied in but remain largely unknown in legumes. Here, we first applied an in silico approach to infer the regulatory inputs of four -like genes of the narrow-leafed lupin .
View Article and Find Full Text PDFNat Commun
January 2025
Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China.
Lilies are economically important monocots known for their ornamental flowers, bulbs, and large genomes. The absence of their genomic information has impeded evolutionary studies and genome-based breeding efforts. Here, we present reference genomes for Lilium sargentiae (lily, 35.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Biology, Lund University, Lund, Sweden.
The daily transition between day and night, known as the diel cycle, is characterised by significant shifts in environmental conditions and biological activity, both of which can affect crucial ecosystem functions like pollination. Despite over six decades of research into whether pollination varies between day and night, consensus remains elusive. We compiled the evidence of diel pollination from 135 studies with pollinator exclusion experiments involving 139 angiosperms.
View Article and Find Full Text PDFMol Breed
January 2025
College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China.
Unlabelled: Apple is a crucial economic product extensively cultivated worldwide. Its production and quality are closely related to the floral transition, which is regulated by intricate molecular and environmental factors. () is a transcription factor that is involved in regulating plant growth and development, with certain play significant roles in regulating flowering.
View Article and Find Full Text PDFPlant Sci
December 2024
Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, Anhui 239000, China. Electronic address:
The shift from vegetative to reproductive growth is an important developmental transition that affects flowering and maturation, architecture, and ecological adaptability in plants. The florigen-antiflorigen system universally controls flowering and plant architecture, and changes to the ratio of these components alter this transition and disrupt growth. The genes FT (FLOWERING LOCUS T), encoding the florigen protein FT, and CETS [CENTRORADIALIS (CEN)/TERMINAL FLOWER1 (TFL1)/SELF-PRUNING (SP)], encoding antiflorigen proteins, have opposing roles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!