One of the most challenging symptoms of aphasia is an impairment in auditory comprehension. The inability to understand others has a direct impact on a person's quality of life and ability to benefit from treatment. Despite its importance, limited research has examined the recovery pattern of auditory comprehension and instead has focused on aphasia recovery more generally. Thus, little is known about the time frame for auditory comprehension recovery following stroke, and whether specific neurologic and demographic variables contribute to recovery and outcome. This study included 168 left hemisphere chronic stroke patients stroke patients with auditory comprehension impairments ranging from mild to severe. Univariate and multivariate lesion-symptom mapping (LSM) was used to identify brain regions associated with auditory comprehension outcomes on three different tasks: Single-word comprehension, yes/no sentence comprehension, and comprehension of sequential commands. Demographic variables (age, gender, and education) were also examined for their role in these outcomes. In a subset of patients who completed language testing at two or more time points, we also analyzed the trajectory of recovery in auditory comprehension using survival curve-based time compression. LSM analyses revealed that poor single-word auditory comprehension was associated with lesions involving the left mid- to posterior middle temporal gyrus, and portions of the angular and inferior-middle occipital gyri. Poor yes/no sentence comprehension was associated almost exclusively with the left mid-posterior middle temporal gyrus. Poor comprehension of sequential commands was associated with lesions in the left posterior middle temporal gyrus. There was a small region of convergence between the three comprehension tasks, in the very posterior portion of the left middle temporal gyrus. The recovery analysis revealed that auditory comprehension scores continued to improve beyond the first year post-stroke. Higher education was associated with better outcome on all auditory comprehension tasks. Age and gender were not associated with outcome or recovery slopes. The current findings suggest a critical role for the posterior left middle temporal gyrus in the recovery of auditory comprehension following stroke, and that spontaneous recovery of auditory comprehension can continue well beyond the first year post-stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397517 | PMC |
http://dx.doi.org/10.3389/fneur.2021.680248 | DOI Listing |
Cell Biol Toxicol
January 2025
Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
Utilizing single-cell transcriptome sequencing (scRNA-seq) technology, this study explores the viability of employing mesenchymal stem cells (MSCs) as a therapeutic approach for age-related hearing loss (ARHL). The research demonstrates MSCs' ability to differentiate into inner ear cell subpopulations, particularly hair cells, delivering Apelin via extracellular vesicles (EVs) to promote M2 macrophage polarization. In vitro experiments show reduced inflammation and preservation of hair cell health.
View Article and Find Full Text PDFPLoS One
January 2025
Psychology Department, Rutgers, The State University of New Jersey, Newark, NJ, United States of America.
Aphasia, a communication disorder caused primarily by left-hemisphere stroke, affects millions of individuals worldwide, with up to 70% experiencing significant reading impairments. These deficits negatively impact independence and quality of life, highlighting the need for effective treatments that target the cognitive and neural processes essential to reading recovery. This Randomized Clinical Trial (RCT) aims to test the efficacy of a combined intervention incorporating aerobic exercise training (AET) and phono-motor treatment (PMT) to enhance reading recovery in individuals with post-stroke aphasia.
View Article and Find Full Text PDFeNeuro
January 2025
Paris-Lodron-University of Salzburg, Department of Psychology, Centre for Cognitive Neuroscience, Salzburg, Austria
Observing lip movements of a speaker facilitates speech understanding, especially in challenging listening situations. Converging evidence from neuroscientific studies shows stronger neural responses to audiovisual stimuli compared to audio-only stimuli. However, the interindividual variability of this contribution of lip movement information and its consequences on behavior are unknown.
View Article and Find Full Text PDFFront Child Adolesc Psychiatry
December 2024
Brain Balance Achievement Centers, Naperville, IL, United States.
Accessibility to developmental interventions for children and adolescents could be increased through virtual, at-home delivery of training programs. Virtual childhood training programs and their effects on cognitive outcomes have not been well studied. To that end, this study examined the effects of the at-home Brain Balance® (BB) program on the cognitive task performance of children and adolescents with baseline developmental and attentional difficulties.
View Article and Find Full Text PDFBrain Commun
January 2025
Centre for Cognitive Neuroscience, University of Salzburg, 5020 Salzburg, Austria.
Former studies have established that individuals with a cochlear implant (CI) for treating single-sided deafness experience improved speech processing after implantation. However, it is not clear how each ear contributes separately to improve speech perception over time at the behavioural and neural level. In this longitudinal EEG study with four different time points, we measured neural activity in response to various temporally and spectrally degraded spoken words presented monaurally to the CI and non-CI ears (5 left and 5 right ears) in 10 single-sided CI users and 10 age- and sex-matched individuals with normal hearing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!