Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The performance of nonionic surfactants is mediated by the interfacial interactions at the solid-liquid interface. Here we applied sum frequency generation (SFG) vibrational spectroscopy to probe the molecular structure of the silica-nonionic surfactant solution interface in situ, supplemented by quartz crystal microbalance with dissipation monitoring (QCM-D) and molecular dynamics (MD) simulations. The combined studies elucidated the effects of nonionic surfactant solution concentration, surfactant composition, and rinsing on the silica-surfactant solution interfacial structure. The nonionic surfactants studied include ethylene-oxide (EO) and butylene oxide (BO) components with different ratios. It was found that the CH groups of the surfactants at the silica-surfactant solution interfaces are disordered, but the interfacial water molecules are ordered, generating strong SFG OH signals. Solutions with higher concentrations of surfactant lead to a slightly higher amount of adsorbed surfactant at the silica interface, resulting in more water molecules being ordered at the interface, or a higher ordering of water molecules at the interface, or both. MD simulation results indicated that the nonionic surface molecules preferentially adsorb onto silanol sites on silica. A surfactant with a higher EO/BO ratio leads to more water molecules being ordered and a higher degree of ordering of water molecules at the silica-surfactant solution interface, exhibiting stronger SFG OH signal, although less material is adsorbed according to the QCM-D data. A thin layer of surfactants remained on the silica surface after multiple water rinses. To the best of our knowledge, this is the first time the combined approaches of SFG, QCM-D and MD simulation techniques have been applied to study nonionic surfactants at the silica-solution interface, which enhances our understanding on the interfacial interactions between nonionic surfactants, water and silica. The knowledge obtained from this study can be helpful to design the optimal surfactant concentration and composition for future applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c01731 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!