Biotreatment of hypersaline wastewater requires robust strains with high resistance to activity inhibition and even bacterium death, which remains a worldwide challenge. Here Halomonas salifodinae, a simultaneous nitrification and denitrification (SND) bacterium, was isolated by performing repeated-batch acclimation, showing efficient nitrogen removal at 0-15% salinity and low activity inhibition prominently superior to that of other strains such as Pseudomonas sp. and Acinetobacter sp. Community analysis as well as comparison of microbial activity at different salinities revealed an increased relative abundance of halotolerant populations by stimulating their salt tolerance during the repeated-batch process. For single or mixed nitrogen sources at 15% salinity, the SND efficiencies of the isolated strain reached above 95%. The high activities were attributed to the key enzymes AMO and HAO for nitrification as well as NAP and NIR for denitrification. The findings provide a promising acclimation pathway to obtain robust bacteria for biotreatment of hypersaline wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2021.125818 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!