Aims: To compare meal-time glycaemia in adults with type 1 diabetes mellitus (T1D) managed with multiple daily injections (MDI) vs. insulin pump therapy (IPT), using self-monitoring blood glucose (SMBG), following diabetes education.
Methods: Adults with T1D received carbohydrate-counting education and a bolus calculator: MDI (Roche Aviva Expert) and IPT (pump bolus calculator). All then wore 3-weeks of masked-CGM (Enlite, Medtronic). Meal-times were assessed by two approaches: 1) Set time-blocks (breakfast 06:00-10:00hrs; lunch 11:00-15:00hrs; dinner 17:00-21:00hrs) and 2) Bolus-calculator carbohydrate entries signalling meal commencement. Post-meal masked-CGM time-in-range (TIR) 3.9-10.0 mmol/L was the primary outcome.
Results: MDI(n = 61) and IPT (n = 59) participants were equivalent in age, sex, diabetes duration and HbA1c. Median (IQR) education time provided did not differ (MDI: 1.1 h (0.75, 1.5) vs. IPT: 1.1 h (1.0, 2.0); p = 0.86). Overall, daytime (06:00-24:00hrs), lunch and dinner TIR did not differ for MDI vs. IPT participants but was greater for breakfast with IPT in both analyses with a mean difference of 12.8%, (95 CI 4.8, 20.9); p = 0.002 (time-block analysis).
Conclusion: After diabetes education, MDI and IPT use were associated with similar day-time glycemia, though IPT users had significantly greater TIR during the breakfast period. With education, meal-time glucose levels are comparable with use of MDI vs. pumps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.diabres.2021.109000 | DOI Listing |
Nutrients
January 2025
School of Pharmacy, Federal University of Bahia, Barão de Jeremoabo Street, Salvador 40170-115, Brazil.
Studies have demonstrated that resveratrol exerts several pharmacological effects. However, the pharmacokinetic parameters are not completely established. This study describes the plasma pharmacokinetics and tissue distribution of resveratrol after administration by different routes and doses in rats.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Yale PET Center, Yale School of Medicine, New Haven, USA.
Purpose: The sphingosine-1-phosphate receptor-1 (S1PR) is involved in regulating responses to neuroimmune stimuli. There is a need for S1PR-specific radioligands with clinically suitable brain pharmcokinetic properties to complement existing radiotracers. This work evaluated a promising S1PR radiotracer, [F]TZ4877, in nonhuman primates.
View Article and Find Full Text PDFJ Appl Clin Med Phys
December 2024
Department of Physics and Atmospheric Sciences, Dalhousie University, Halifax, Canada.
Purpose: In radiotherapy, body contour inaccuracies may compromise the delineation of adjacent structures and affect calculated dose. Here, we evaluate the un-editable body contours auto-generated by Ethos versions 1.0 (v1) and 2.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Forschungszentrum Jülich, Jülich, Germany;
In animal studies it has been observed that the inhibitory neuromodulator adenosine is released into the cerebral interstitial space during hypoxic challenges. Adenosine's actions on the A adenosine receptor (AAR) protect the brain from oxygen deprivation and overexertion through adjustments in cerebral blood flow, metabolism, and electric activity. Using 8-cyclopentyl-3-(3-[F]fluoropropyl)-1-propylxanthine ([F]CPFPX), a PET tracer for the AAR, we tested the hypothesis that hypoxia-induced adenosine release reduces AAR availability in the human brain.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
SimHerd A/S, Niels Pedersens Alle 2, 8300, Denmark.
The study investigates the economics of sensor-assisted dairy health management and indicates a certain economic potential in the use of a commercial rumen bolus capable of tracking activity and core body temperature. The economic evaluation was performed applying a stochastic model with the net return (NR) of investment of the sensor system as the target variable. The calculated NR considers the gross margin (GM) for both sensor-assisted and visual health monitoring, time savings through sensor-assisted monitoring, additional time spent addressing false positive messages from the sensor system, labor costs, and all costs associated with the investment in the sensor system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!