Discrete dislocation simulation of the ultrasonic relaxation of non-equilibrium grain boundaries in a deformed polycrystal.

Ultrasonics

Institute for Metals Superplasticity Problems, Russian Academy of Sciences, 39, Khalturin St, 450001 Ufa, Russia; Nosov Magnitogorsk State Technical University, 38 Lenin St, Magnitogorsk 455000, Russia.

Published: December 2021

For the first time, the relaxation of disordered dislocation arrays in a model 3 × 3 columnar polycrystal under ultrasonic action is studied using the discrete dislocation approach. All grains contain three non-parallel slip systems located at an angle of 60° to each other. The non-equilibrium state of the grain boundaries is modeled using two finite edge dislocation walls with Burgers vector of opposite signs, which are equivalent to a wedge junction disclination quadrupole. It is shown that ultrasonic treatment causes a significant rearrangement of the lattice dislocations and their gliding towards the grain boundaries. It results in a decrease in the internal stress fields associated with the presence of non-equilibrium grain boundaries and relaxation of dislocation structure. The model predicts an existence of optimal amplitude, at which the maximum relaxing effect can be achieved. Dependence of the relaxation of dislocation structure on the grain size is also investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2021.106555DOI Listing

Publication Analysis

Top Keywords

grain boundaries
16
discrete dislocation
8
non-equilibrium grain
8
relaxation dislocation
8
dislocation structure
8
grain
5
dislocation
5
dislocation simulation
4
simulation ultrasonic
4
relaxation
4

Similar Publications

Suppressing Cation Interdiffusion at CeO/ZrO Heterointerfaces via Dopant Segregation.

ACS Appl Mater Interfaces

January 2025

Hydrogen Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.

Cation interdiffusion as a result of a chemical-potential gradient occurring at heterointerfaces is often regarded as an unfavorable side reaction and is typically suppressed through the use of a diffusion barrier layer. In this study, we propose a straightforward method for suppressing interdiffusion that involves the creation of nanometer-thick diffusion barrier layers by means of dopant segregation. Using the CeO/ZrO heterointerface in this study, we demonstrate that a Sc acceptor dopant tends to accumulate at the heterointerface during the sintering process, especially at the edge of the CeO grain boundary, thereby effectively suppressing Ce-Zr interdiffusion.

View Article and Find Full Text PDF

Microstructure evolution during solution annealing of an Al-Zn-Mg-Cu alloy with La additions.

Sci Rep

January 2025

Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000, Ljubljana, Slovenia.

The high-strength 7xxx Al alloys are frequently used due to their excellent properties. To achieve these properties, heat treatment is crucial. In this study, the influence of La on the microstructure evolution of Al-Zn-Mg-Cu alloys during solution annealing, the first step of heat treatment, was investigated.

View Article and Find Full Text PDF

Accurate and early diagnosis of Depression and Anxiety is met with the challenge of comorbid presentations and the neglect of the basic disturbances of self in current diagnostic criteria. Here, we review studies employing functional magnetic resonance imaging (fMRI) with self-based tasks in major depressive disorder (MDD) and anxiety disorders (AD) to determine the transdiagnostic and differential-diagnostic applicability of neural markers related to the self. This systematic review identified three main findings: (I) Large-scale brain-wide changes related to self-dysfunction overlap significantly between MDD and AD.

View Article and Find Full Text PDF

Genomes reveal pervasive distant hybridization in nature among cyprinid fishes.

Gigascience

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.

Background: Genomic data have unveiled a fascinating aspect of the evolutionary past, showing that the mingling of different species through hybridization has left its mark on the histories of numerous life forms. However, the relationship between hybridization events and the origins of cyprinid fishes remains unclear.

Results: In this study, we generated de novo assembled genomes of 8 cyprinid fishes and conducted phylogenetic analyses on 24 species.

View Article and Find Full Text PDF

The polycrystalline nature of perovskites, stemming from their facile solution-based fabrication, leads to a high density of grain boundaries (GBs) and point defects. However, the impact of GBs on perovskite performance remains uncertain, with contradictory statements found in the literature. We developed a machine learning force field, sampled GB structures on a nanosecond time scale, and performed nonadiabatic (NA) molecular dynamics simulations of charge carrier trapping and recombination in stoichiometric and doped GBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!