Enhancing Acsl4 in absence of mTORC2/Rictor drove β-cell dedifferentiation via inhibiting FoxO1 and promoting ROS production.

Biochim Biophys Acta Mol Basis Dis

Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Published: December 2021

Rapamycin insensitive companion of mechanistic target of Rapamycin (Rictor), the key component of mTOR complex 2 (mTORC2), controls both β-cell proliferation and function. We sought to study whether long chain acyl-CoA synthetase 4 (Acsl4) worked downstream of Rictor/mTORC2 to maintain β-cell functional mass. We found Acsl4 was positively regulated by Rictor at transcriptional and posttranslational levels in mouse β-cell. Infecting adenovirus expressing Acsl4 in β-cell-specific-Rictor-knockout (βRicKO) islets and Min6 cells knocking down Rictor with lentivirus-expressing siRNA-oligos targeting Rictor(siRic), recovered the β-cell dysplasia but not dysfunction. Cell bioenergetic experiment performed with Seahorse XF showed that Acsl4 could not rescue the dampened glucose oxidation in Rictor-lacking β-cell, but further promoted lipid oxidation. Transposase-Accessible Chromatin (ATAC) and H3K27Ac chromatin immunoprecipitation (ChIP) sequencing studies reflected the epigenetic elevated molecular signature for β-cell dedifferentiation and mitigated oxidative defense/response. These results were confirmed by the observations of elevated acetylation and ubiquitination of FoxO1, increased protein levels of Gpx1 and Hif1an, excessive reactive oxygen species (ROS) production and diminished MafA in Acsl4 overexpressed Rictor-lacking β-cells. In these cells, antioxidant treatment significantly recovered MafA level and insulin content. Inducing lipid oxidation alone could not mimic the effect of Acsl4 in Rictor lacking β-cell. Our study suggested that Acsl4 function in β-cell was context dependent and might facilitate β-cell dedifferentiation with attenuated Rictor/mTORC2 activity or insulin signaling via posttranslational inhibiting FoxO1 and epigenetically enhancing ROS induced MafA degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2021.166261DOI Listing

Publication Analysis

Top Keywords

β-cell dedifferentiation
12
β-cell
10
inhibiting foxo1
8
ros production
8
lipid oxidation
8
acsl4
7
enhancing acsl4
4
acsl4 absence
4
absence mtorc2/rictor
4
mtorc2/rictor drove
4

Similar Publications

Phosphodiesterase 4D inhibition improves the functional and molecular outcome in a mouse and human model of Charcot Marie Tooth disease 1 A.

Biomed Pharmacother

January 2025

Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium. Electronic address:

Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation.

View Article and Find Full Text PDF

NADPH Oxidases: Redox Regulation of Cell Homeostasis & Disease.

Physiol Rev

January 2025

Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.

The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.

View Article and Find Full Text PDF

Pancreatic expression of CPT1A is essential for whole body glucose homeostasis by supporting glucose-stimulated insulin secretion.

J Biol Chem

January 2025

Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. Electronic address:

Pancreatic islet β-cells express the Cpt1a gene, which encodes the enzyme carnitine palmitoyltransferase 1A (CPT1A), an enzyme that facilitates entry of long chain fatty acids into the mitochondria. Because fatty acids are required for glucose-stimulated insulin secretion, we tested the hypothesis that CPT1A is essential to support islet β-cell function and mass. In this study, we describe genetic deletion of Cpt1a in pancreatic tissue (Cpt1a) using C57BL/6J mice.

View Article and Find Full Text PDF

Aims: Classification and risk stratification of endometrial carcinoma (EC) has transitioned from histopathological features to molecular classification, e.g. the ProMisE classifier, identifying four prognostic subtypes: POLE mutant (POLEmut) with almost no recurrence or disease-specific death events, mismatch repair deficient (MMRd) and no specific molecular profile (NSMP), with intermediate outcome and p53 abnormal (p53abn) with poor outcomes.

View Article and Find Full Text PDF

Introduction: Tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and in regulating neuronal excitability. Among tau-coding microtubule associated protein tau () gene mutations, the A152T mutation is reported to increase the risk of AD and neuronal excitability in mouse models.

Methods: To investigate the effects of gene expression and its mutations on neuronal activity in human neurons, we employed genome editing technology to introduce the A152T or P301S mutations into induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!