Cow milk protein is one of the leading food allergens. This study aimed to develop an effective method for reducing milk sensitization by evaluating antigenicity of fermented skim milk protein using Lactobacillus helveticus KLDS 1.8701, Lactobacillus plantarum KLDS 1.0386, and a combination of both strains. The proteolytic systems of strains in terms of genotype and phenotype are characterized by complete genome sequence, and evaluation the antigenicity of skim milk proteins was determined by ELISA and liquid chromatography with tandem mass spectrometry. Our results showed that the genomes encoded a variety of peptidase genes. For fermented skim milk, the degree of hydrolysis of the combined strains was higher than that of individual strain. Electrophoresis showed that the band color density of α-casein (α-CN) by fermentation of the combined strains was reduced when compared with control group. The fermentation process of the combined strains inhibited α-CN, β-lactoglobulin, and α-lactalbumin antigenicity by 69.13, 36.10, and 20.92, respectively. Major allergic epitopes of α-CN and β-lactoglobulin were cleaved by abundant proteases of combined strains. In all, this study showed that the fermentation process involving both L. helveticus and L. plantarum strains could reduce cow milk protein allergenicity through the combination of cell-envelope proteinase and peptidase on α-CN.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2021-20668DOI Listing

Publication Analysis

Top Keywords

combined strains
16
cow milk
12
milk protein
12
skim milk
12
lactobacillus helveticus
8
helveticus klds
8
klds 18701
8
18701 lactobacillus
8
lactobacillus plantarum
8
plantarum klds
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!