Atmospheric heavy metal deposition in agroecosystems has increased recently, especially in northern China, which poses serious risks to crop safety and human health via food chain. Wheat grains can accumulate high levels of Pb even when wheat is planted in soils with low levels of Pb. However, the influence of atmospheric deposition on the accumulation and distribution of Pb in wheat grain is still unclear. A field survey was conducted in three districts (A: a district with industrial and traffic pollution; B: a district with traffic pollution; and C: an unpolluted district) in Hebei Province, North China. The grain of wheat cultivated in district A accumulated more Pb from soil and atmospheric deposition than those in other districts, and the bran from district A contained 3.50 and 2.04 times more Pb than those from districts B and C, respectively. The Pb distribution pattern in wheat grain detected by laser ablation inductively coupled mass spectrometry (LA-ICP-MS) was characterized by accumulation mostly in the pericarp and seed coat rather than in the crease, embryo and endosperm. Furthermore, Pb isotopic data showed that airborne Pb was the major source (>50%) of Pb in wheat grain. Interestingly, average contributions of Pb from atmospheric deposition to white flour (78.22%) were higher than its contributions to bran (56.27%). In addition, wheat flag leaves were exposed to PbSO at the booting stage, and much greater Pb accumulation (0.33-0.48 mg/kg) was observed in exposed wheat grain than in the control (P < 0.05), PbSO constituted most (82.80-100%) of the Pb in the wheat grain. In summary, the results confirmed the efficient foliar Pb uptake and transfer from atmospheric deposition into wheat grain. It would be a new sight for understanding the contribution of airborne Pb to Pb accumulation in wheat grains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.149729 | DOI Listing |
Funct Plant Biol
January 2025
Krishi Vigyan Kendra, Siwan, Dr. RPCAU, Pusa, Bihar, India.
Detrimental effects of terminal heat stress could be mitigated by exogenous application of synthetic compounds by preserving cell membrane integrity and protecting against oxidative damage. A field experiment was conducted to test the application of seven synthetic compounds on wheat growth traits: (1) thiourea (20 mM and 40mM); (2) potassium nitrate (1% and 2%); (3) sodium nitroprusside (400 μg mL-1 and 800μg mL-1 ); (4) dithiothreitol (25 ppm and 50ppm); (5) salicylic acid (100 ppm and 200ppm); (6) thioglycolic acid (200 ppm and 500ppm); and (7) putrescine (4 mM and 6mM). These compounds were applied at the anthesis and grain-filling stages to enhance physio-biochemical traits and yield attributes of wheat (Triticum aestivum ) cvs GW-11 and GW-496 under terminal heat stress.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
The postingestion journey and bioconversion of wheat bran-bound ferulic acid, a known beneficial phytochemical, remain insufficiently understood. This study aims to systematically investigate its bioaccessibility, bioavailability, excretion, and colonic metabolism, both and . Initial analysis confirmed the abundance and bioactivity of ferulic acid in wheat bran.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
Drought stress significantly impacts wheat productivity, but plant growth regulators may help mitigate these effects. This study examined the influence of gibberellic acid (GA3) and abscisic acid (ABA) on wheat (Triticum aestivum L., CV: Giza 171) growth and yield under different water regimes.
View Article and Find Full Text PDFEnviron Entomol
January 2025
Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada.
Understanding the movement and distribution patterns of insects is crucial for developing effective stored grain management protocols. This research investigates 3-dimensional movement and distribution of Tribolium castaneum (Herbst) and Cryptolestes ferrugineus (Stephens) separately at different temperatures (5, 10, 20, and 30°C) and for different movement periods (1, 2, 3, and 24 h) in stored wheat with a uniform moisture content of 14.5% (wet basis).
View Article and Find Full Text PDFFood Chem
December 2024
School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China. Electronic address:
Grains and oilseeds, including maize, wheat, and peanuts, are essential for human and animal nutrition but are vulnerable to contamination by fungi and their toxic metabolites, mycotoxins. This review provides a comprehensive investigation of the applications of hyperspectral imaging (HSI) technologies for the detection of fungal and mycotoxins contamination in grains and oilseeds. It explores the capability of HSI to identify specific spectral features of contamination and emphasized the critical role of sample properties and sample preparation techniques in HSI applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!