Clinical Whole Genome Sequencing for Clarithromycin and Amikacin Resistance Prediction and Subspecies Identification of Mycobacterium abscessus.

J Mol Diagn

Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California. Electronic address:

Published: November 2021

Mycobacterium abscessus infections are an emerging health care concern in patients with chronic pulmonary diseases, leading to high morbidity and mortality. One major challenge is resistance to clarithromycin, a cornerstone antibiotic with high efficacy. Therefore, treatment is primarily guided by phenotypic susceptibility results of clarithromycin, which requires extended incubation to assess for inducible resistance. Resistance mechanisms for clarithromycin include induction of erm(41) and mutations in the 23S rRNA gene (rrl). In addition, mutations in the 16S rRNA encoding gene (rrs) can confer high-level amikacin resistance, another essential drug in the treatment of M. abscessus infections. Herein, we developed a clinical whole genome sequencing (WGS) assay for clarithromycin resistance based on rrl and erm(41) gene sequences and amikacin resistance based on the rrs sequence in M. abscessus, as well as subspecies identification. Genotypic-based predictions were determined for 104 isolates from 68 patients. The overall accuracy of genotypic prediction for clarithromycin compared with phenotypic susceptibility results was 100% (95% CI, 96.45%-100%). For amikacin, we also obtained 100% accuracy (95% CI, 96.52%-100%). The high concordance between the genotypic and phenotypic results demonstrates that a WGS-based assay can be used in a clinical laboratory for determining resistance to clarithromycin and amikacin in M. abscessus isolates. WGS can also provide subspecies identification and high-definition phylogenetic information for more accurate M. abscessus strain typing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmoldx.2021.07.023DOI Listing

Publication Analysis

Top Keywords

amikacin resistance
12
subspecies identification
12
clinical genome
8
genome sequencing
8
clarithromycin amikacin
8
resistance
8
mycobacterium abscessus
8
abscessus infections
8
resistance clarithromycin
8
phenotypic susceptibility
8

Similar Publications

Background: Wound infections significantly impact morbidity, mortality, and healthcare costs globally. The Kashmir Valley's unique geographical and climatic conditions, coupled with resource constraints and antibiotic misuse, complicate managing these infections effectively. This study aimed to identify predominant bacterial pathogens in wound infections at a tertiary care hospital in Kashmir, determine their antibiotic susceptibility profiles, and estimate the prevalence of multidrug-resistant (MDR) strains.

View Article and Find Full Text PDF

Background: Antibiotic resistance in various microorganisms has become one of the most serious health problems worldwide. The use of nanoparticles in combination with conventional antibiotics is one of the recent efforts to overcome these challenges. This study aims to synthesize and evaluate the possibility of using amikacin-loaded selenium nanoparticles as antibacterial agent against multidrug-resistant , that causes bovine mastitis.

View Article and Find Full Text PDF

As an opportunistic pathogen, is often associated with severe respiratory infections. A study conducted in an ICU of a tertiary hospital in Vietnam, where infection management is relatively good, yielded only 18 clinical isolates of over 6 months. Though the number is small, treating infections is highly complicated.

View Article and Find Full Text PDF

Background: In clinical practice, the emergence of ST11-K64 carbapenem-resistant Klebsiella pneumoniae (ST11-K64 CRKP) has become increasingly alarming. Despite this trend, limited research has been conducted to elucidate the clinical and molecular characteristics of these strains.

Objectives: This study aimed to comprehensively investigate the clinical characteristics, antimicrobial resistance patterns, resistance and virulence-associated genes, and molecular epidemiology of ST11-K64 CRKP in Southwest China.

View Article and Find Full Text PDF

Exposure of Mycobacteriodes abscessus clones to mucin affects bacterial phenotype.

Sci Rep

January 2025

Department of Biomedical Sciences, Carlton College of Veterinary Medicine, Oregon State University, Corvallis, USA.

In the past 20 years infections caused by Mycobacterioides abscessus have become increasingly common in patients with chronic lung conditions. The microorganisms are also resistant to a number of antibiotic classes, making treatment challenging. To begin understanding how the bacterium adapts to the lung environment, pure colonies of M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!