The growing burden of antibiotic resistance worldwide calls for developing new classes of antimicrobial strategy. Recently years, the use of adjuvants that rescue antibiotics identified as a promising strategy for overcoming bacterial resistance. In this study, three ruthenium complexes functionalized with furan-substituted ligands([Ru(phen) (CAPIP)](ClO ) (Ru(Ⅱ)-1), [Ru(dmp) (CAPIP)](ClO ) (Ru(Ⅱ)-2) and [Ru(dmb) (CAPIP)](ClO ) (Ru(Ⅱ)-3) (dmb=4,4'-dimethyl-2,2'-bipyridine, phen=1,10-phenanthroline, dmp=2,9-dimethyl-1,10-phenanthroline, CAPIP=(E)-2- (2-(furan-2-yl)vinyl)-1H-imidazo[4,5-f][1,10]phenanthroline)) were designed and synthesized. The antimicrobial activities of all compounds against S. aureus were assessed by growth inhibition assays. The MIC values of three complexes range from 0.015 to 0.050 mg/ml. Subsequently, the Ru(II)-2 complexes which exhibited strongest antibacterial activity were further tested against bacteria biofilms formation and toxin secretion. In addition, aimed to test whether ruthenium complexes have potential value as antimicrobial adjuvants, the synergism between Ru(Ⅱ)-2 and some antibiotics against S. aureus were examined through checkerboard method. Interestingly, Ru(Ⅱ)-2 could not only effectively inhibit biofilms formation of S. aureus and inhibit the hemolysin toxin secretion, but also selectivity show synergism with two common antibiotics. More importantly, mouse infection study also verified Ru(Ⅱ)-2 were highly effective against S. aureus in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.13943DOI Listing

Publication Analysis

Top Keywords

ruthenium complexes
12
biofilms formation
8
toxin secretion
8
complexes
5
aureus
5
identification ruthenium
4
complexes furan-substituted
4
furan-substituted ligands
4
ligands antibacterial
4
antibacterial agents
4

Similar Publications

New methodologies have been evaluated for validating analytical characterization with artificial neural networks (ANNs). Compared to previous machine learning models, these provide more accurate and automated results with high testing accuracy. The Schiff base ruthenium complexes used in the proposed study were synthesized using 4-aminoantipyrine derivatives.

View Article and Find Full Text PDF

Ambient-pressure selective hydrogenation of unsaturated aldehydes and ketones into unsaturated alcohols in the water phase.

Dalton Trans

January 2025

Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.

A universal and green catalytic system for the hydrogenation of unsaturated aldehydes and ketones into the corresponding alcohols with the CC bonds retained under atmospheric hydrogen pressure in the water phase was realized by -functionalized amino ligand-stabilized ruthenium complexes (-PPhCHNHMe)[(CHNHR)]RuCl (R = H, Me, Et) and (-PPhCHNMe)[(CHNHEt)]RuCl with wide substrate compatibility and excellent functionality tolerance. The structural synergism between -PPhCHNHMe and (CHNHEt) achieves the enhanced performance, with a positive correlation with the electron density of the amino ligand.

View Article and Find Full Text PDF

Targeting Ru(III) and Ru(I) η2-alkyne species, 2,2'-(iPr2E)2-substituted diphenylacetylenes (1-E, E = P, As) were em-ployed for the pre-paration of [ECCE]-coordinated ruthenium com-plexes. The re-actions between 1-E and cis-(MeCN)2(COD)RuCl2 led to the required Ru(II) starting materials cis-[ECCE]RuCl2(MeCN) (3-E). Upon oxi-dation of 3-E with PhICl2, the Ru(III) target com-plexes [ECCE]RuCl3 (7-E) were detectable for E = P and E = As, but only the arsa-deriva-tive 7-As was obtained in a pure form, namely via oxi-da-tion of cis-[AsCCAs]RuCl2(THT) (THT = tetrahydrothiophene).

View Article and Find Full Text PDF

Due to the presence of the pyridyl directing group, -aryl-2-aminopyridines can quickly form stable complexes with metals, leading to cyclization and functionalization reactions. A large number of N-heterocycles and nitrogen-based molecules can be easily constructed this direct and atom-economical cross-coupling strategy. In this review, we have highlighted the transformations of -aryl-2-aminopyridines in the presence of various transition metal catalysts, such as palladium, rhodium, iridium, ruthenium, cobalt and copper.

View Article and Find Full Text PDF

The idea of coordinating biologically active ligand systems to metal centers to exploit their synergistic effects has gained momentum. Therefore, in this report, three Ru complexes - of morpholine-derived thiosemicarbazone ligands have been prepared and characterized by spectroscopy and HRMS along with the structure of through a single-crystal X-ray diffraction study. The solution stability of - was tested using conventional techniques such as UV-vis and HRMS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!