Oncolytic viruses (OVs), above and beyond infecting and lysing malignant cells, interact with the immune system in complex ways that have important therapeutic significance. While investigation into these interactions is still in its early stages, important insights have been made over the past two decades that will help improve the clinical efficacy of OV-based management strategies in cancer care moving forward. The inherent immunosuppression that defines the tumor microenvironment can be modified by OV infection, and the subsequent recruitment and activation of innate immune cells, in particular, is central to this. Indeed, neutrophils, macrophages, natural killer cells, and dendritic cells, as well as other populations such as myeloid-derived suppressor cells, are key to the immune escape that allows tumors to survive, but their natural response to infection can be exploited by virotherapy. While stimulation of innate immune cells by OVs can initiate antitumor responses, related antiviral activity can limit virus spread and direct cytopathogenic effects. In this review, we highlight how each innate immune cell population influences this balance of antitumor and antiviral forces during virotherapy, some of the important molecular pathways that have been identified, and specific therapeutic targets that have emerged through this work. We discuss the importance of OV-based combination therapies in optimizing antiviral and antitumor innate immune responses stimulated by virotherapy toward tumor eradication, and how these processes vary depending on the tumor and OV in question. Rather than concentrating on a particular OV species in the review, we present the range of effects that have been documented across OV types to emphasize the context-specific nature of these interactions and how this is important in the design of future OV-based treatment approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41417-021-00351-3 | DOI Listing |
J Hepatol
January 2025
Department of Biomedicine, University of Basel, Switzerland; University Centre for Gastrointestinal and Liver Disease Basel, Switzerland. Electronic address:
Background & Aims: Infectious complications determine the prognosis of cirrhosis patients. Their infection susceptibility relates to the development of immuneparesis, a complex interplay of different immunosuppressive cells and soluble factors. Mechanisms underlying the dynamics of immuneparesis of innate immunity remain inconclusive.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China. Electronic address:
The small abalone (Haliotis diversicolor) is an economic shellfish cultured in the south coast of China. In recent years, the frequent occurrence of the disease has led to significant mortality in abalone farms. Deleted in malignant brain tumors 1 (DMBT1), a member of the scavenger receptor cysteine-rich (SRCR) protein family, plays an important role in host defense.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:
The influenza A virus nuclear export protein (NEP) is a multifunctional protein that is essential for the viral life cycle and has very high sequence conservation. However, since the open reading frame of NEP largely overlaps with that of another influenza viral protein, non-structural protein 1, it is difficult to infer the functional constraints of NEP based on sequence conservation analysis. In addition, the N-terminal of NEP is structurally disordered, which further complicates the understanding of its function.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
Unlabelled: Respiratory and encephalitic virus infections represent a significant risk to public health globally. Detailed investigations of immunological responses and disease outcomes during sequential virus infections are rare. Here, we define the impact of influenza virus infection on a subsequent virus encephalitis.
View Article and Find Full Text PDFClin Exp Immunol
January 2025
Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
Introduction: Multiple Sclerosis (MS) is a complex auto-inflammatory disease affecting the brain and spinal cord, which results in axonal de-myelination and symptoms including fatigue, pain, and difficulties with vision and mobility. The involvement of the immune system in the pathology of MS is well established, particularly the adaptive T cell response, and there has been a particular focus on the IL-17-producing subset of Th17 cells and their role in driving disease. However, the importance of innate immune cells has not been so well characterised.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!