AI Article Synopsis

  • Obesity happens when we take in more calories than we use, and special fat cells called brown adipose tissue (BAT) help burn those calories.
  • Scientists found that a pesticide called chlorpyrifos can stop these fat cells from working properly and reduce their ability to burn energy.
  • When mice were given high-fat diets and exposed to this pesticide, they gained more weight and developed health issues like fatty liver disease and insulin resistance.

Article Abstract

Obesity results from a caloric imbalance between energy intake, absorption and expenditure. In both rodents and humans, diet-induced thermogenesis contributes to energy expenditure and involves the activation of brown adipose tissue (BAT). We hypothesize that environmental toxicants commonly used as food additives or pesticides might reduce BAT thermogenesis through suppression of uncoupling protein 1 (UCP1) and this may contribute to the development of obesity. Using a step-wise screening approach, we discover that the organophosphate insecticide chlorpyrifos suppresses UCP1 and mitochondrial respiration in BAT at concentrations as low as 1 pM. In mice housed at thermoneutrality and fed a high-fat diet, chlorpyrifos impairs BAT mitochondrial function and diet-induced thermogenesis, promoting greater obesity, non-alcoholic fatty liver disease (NAFLD) and insulin resistance. This is associated with reductions in cAMP; activation of p38MAPK and AMPK; protein kinases critical for maintaining UCP1 and mitophagy, respectively in BAT. These data indicate that the commonly used pesticide chlorpyrifos, suppresses diet-induced thermogenesis and the activation of BAT, suggesting its use may contribute to the obesity epidemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397754PMC
http://dx.doi.org/10.1038/s41467-021-25384-yDOI Listing

Publication Analysis

Top Keywords

diet-induced thermogenesis
16
pesticide chlorpyrifos
8
brown adipose
8
adipose tissue
8
chlorpyrifos suppresses
8
bat
6
obesity
5
thermogenesis
5
chlorpyrifos promotes
4
promotes obesity
4

Similar Publications

We hypothesized that melatonin (Mel) supplementation may offer therapeutic benefits for obesity, particularly in women. Therefore, the study evaluated Mel's effects on white adipose tissue (WAT) in diet-induced obese female mice. Four-week-old C57BL/6 females were assigned to either a control diet (C group) or a high-fat diet (HF group) for 6 weeks (n = 20/group).

View Article and Find Full Text PDF

A comprehensive atlas of multi-tissue metabolome and microbiome shifts: Exploring obesity and insulin resistance induced by perinatal bisphenol S exposure in high-fat diet-fed offspring.

J Hazard Mater

December 2024

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China. Electronic address:

Bisphenol S (BPS) is widely used as a substitute for Bisphenol A (BPA). While perinatal BPS exposure is suspected to increase susceptibility to high-caloric diet-induced adipogenesis, how BPS affects offspring remains largely unknown. This study explored effects of prenatal BPS exposure on adiposity and insulin resistance in high-fat diet (HFD)-fed C57BL/6 offspring, revealing significant changes in body weight, glucose tolerance, insulin sensitivity, and histopathology.

View Article and Find Full Text PDF

Testing a proposed mathematical model of weight loss in women enrolled on a commercial weight-loss programme: the LighterLife study.

J Nutr Sci

December 2024

Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom of Great Britain and Northern Ireland.

Weight loss results in obligatory reductions in energy expenditure (EE) due to loss of metabolically active fat-free mass (FFM). This is accompanied by adaptive reductions (i.e.

View Article and Find Full Text PDF

Background: Obesity and aging are associated with the progressive loss of brown adipose tissue (BAT), an increase in visceral white adipose tissue (vWAT), and a reduction in subcutaneous white adipose tissue (sWAT). The progressive expansion of visceral obesity promotes a low grade of systemic chronic inflammation (meta-inflammation), contributing to the onset of comorbidities such as type 2 diabetes mellitus (T2DM), metabolic syndrome, and even cancer. Thus, preserving the thermogenic activity of adipose tissue and improving the metabolic flexibility of sWAT could be an effective strategy to prevent the development of metabolic chronic diseases and promote healthy aging.

View Article and Find Full Text PDF

Spop deficiency impairs adipogenesis and promotes thermogenic capacity in mice.

PLoS Genet

December 2024

School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China.

As the adaptor protein that determines substrate specificity of the Cul3-SPOP-Rbx1 E3 ligase complex, SPOP is involved in numerous biological processes. However, its physiological connections with adipogenesis and thermogenesis remain poorly understood. In the current study, we report that the conditional knockout of Spop in mice results in substantial changes in protein expression, including the upregulation of a critical factor associated with thermogenesis, UCP1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!