Revisiting the Cytotoxicity of Cationic Polyelectrolytes as a Principal Component in Layer-by-Layer Assembly Fabrication.

Pharmaceutics

Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı, 18, 420008 Kazan, Republic of Tatarstan, Russia.

Published: August 2021

Polycations are an essential part of layer-by-layer (LbL)-assembled drug delivery systems, especially for gene delivery. In addition, they are used for other related applications, such as cell surface engineering. As a result, an assessment of the cytotoxicity of polycations and elucidation of the mechanisms of polycation toxicity is of paramount importance. In this study, we examined in detail the effects of a variety of water-soluble, positively charged synthetic polyelectrolytes on in vitro cytotoxicity, cell and nucleus morphology, and monolayer expansion changes. We have ranked the most popular cationic polyelectrolytes from the safest to the most toxic in relation to cell cultures. 3D cellular cluster formation was disturbed by addition of polyelectrolytes in most cases in a dose-dependent manner. Atomic force microscopy allowed us to visualize in detail the structures of the polyelectrolyte-DNA complexes formed due to electrostatic interactions. Our results indicate a relationship between the structure of the polyelectrolytes and their toxicity, which is necessary for optimization of drug and gene delivery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400787PMC
http://dx.doi.org/10.3390/pharmaceutics13081230DOI Listing

Publication Analysis

Top Keywords

cationic polyelectrolytes
8
delivery systems
8
gene delivery
8
polyelectrolytes
5
revisiting cytotoxicity
4
cytotoxicity cationic
4
polyelectrolytes principal
4
principal component
4
component layer-by-layer
4
layer-by-layer assembly
4

Similar Publications

The polyamines putrescine, spermidine, and spermine are polycations ubiquitously present in cells, where they exert pleiotropic functions in cellular mechanisms like proliferation, protein synthesis (through the hypusination of the transcription factor EIF5a), redox balance, autophagy, and different forms of cell death [...

View Article and Find Full Text PDF

Polyelectrolyte complex nanoparticles (PECNPs) often fully dissociate into individual polycations (PC) and polyanions (PA) at high salinities. Herein, we introduce a novel type of colloidally stable PECNP in which the PC is cross-linked, in this case branched polyethylenimine (PEI) to limit this dissociation, even in solutions up to 5.2 M NaCl or 5.

View Article and Find Full Text PDF

Charge-neutralized polyethylenimine-lipid nanoparticles for gene transfer to human embryonic stem cells.

Bioorg Med Chem

November 2024

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China. Electronic address:

Article Synopsis
  • Gene delivery is essential for modifying stem cells, and this study introduces a new method for creating charge-neutralized polyethylenimine (PEI)-lipid nanoparticles aimed at improving stem cell transfection.
  • The research shows that over 15% of these nanoparticles achieved high transfection efficiency across different cell types, outperforming popular methods like Lipofectamine 2000 and FuGENE HD.
  • Key factors for efficient gene delivery were identified, including the length and ratio of hydrophobic alkyl substitutions, leading to better results than conventional cationic PEI and enabling the successful transfer of two plasmid DNAs into challenging human embryonic stem cells for optogenetic research.
View Article and Find Full Text PDF

A green, versatile, and facile strategy for anti-biofouling surface with ultra-high graft density polyethylene glycol.

J Nanobiotechnology

December 2024

Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, 325001, Zhejiang, China.

Implantable catheters are susceptible to severe complications due to non-specific protein adhesion on their surfaces. Polyethylene glycol (PEG) coatings, the gold standard for resistance to non-specific protein adhesion, present a challenge in achieving high-density grafting, which significantly restricts their use as anti-biofouling coatings. Herein, we exploited the strong interaction between polyphenols (PCs) and polycations (K6-PEG) to graft PEG onto the surface of PC-Cu (A network of metal polyphenols composed of proanthocyanidins and metal copper ions, with expectation for the coating with excellent resistance to non-specific protein adhesion (PC-Cu@K6-PEG).

View Article and Find Full Text PDF
Article Synopsis
  • A biocompatible polyelectrolyte complex (PEC) was created using Tragacanth gum (TG) and chitosan (CS) to explore its potential biological applications, with an optimized TG:CS ratio of 18:2 identified through various tests.
  • The study found that at pH 4, TG and CS showed strong interactions, highlighting charge neutralization in the PECs, which featured a unique macroporous structure.
  • The PEC cryogel demonstrated significant antibacterial activity against E. coli and S. aureus, while also promoting wound healing in human fibroblast cells without any toxic effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!