Vaccination against SARS-CoV-2 will likely be the most promising way to combat the pandemic. Even if mass vaccination is urgent, it should still always be supported by appropriate patient safety management. The aim of this study, based on failure mode, effects and criticality analysis (FMECA), was to identify possible failures and highlight measures that can be adopted to prevent their occurrence. A team of resident doctors in public health from the University of Padua and specialists in risk analysis in public health examined the mass vaccination process. A diagram was drafted to illustrate the various phases of mass vaccination, analyze the process, and identify all failure modes. Criticalities were ascertained by rating the severity, frequency and likelihood of failure detection on a scale of 1 to 10. We identified a total of 71 possible faults distributed over the various phases of the process, and 34 of them were classified as carrying a high risk. For the potentially high-risk failure modes, we identified 63 recommended actions to contain the cause of their occurrence or improve their detection. For the purpose of detecting potential failures, FMECA can be successfully applied to mass vaccination, which should be considered a high-risk process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402500PMC
http://dx.doi.org/10.3390/vaccines9080866DOI Listing

Publication Analysis

Top Keywords

mass vaccination
20
failure mode
8
criticality analysis
8
public health
8
failure modes
8
vaccination
6
failure
5
mass
5
mode criticality
4
analysis improve
4

Similar Publications

Low-cost and safe vaccines are needed to fill the vaccine inequity gap for future pandemics. Pichia pastoris is an ideal expression system for recombinant protein production due to its cost-effective and easy-to-scale-up process. Here, we developed a next-generation SARS-CoV2 Omicron BA.

View Article and Find Full Text PDF

Three hospitals implemented molecular point-of-care tests (POCTs) to screen patients for SARS-CoV-2 infection upon admission during the 2021/2022 influenza season, which in Belgium lasted from January to April 2022. The samples were simultaneously tested for influenza A/B. Influenza positivity at admission was examined in relation to patient characteristics and symptomatology.

View Article and Find Full Text PDF

Examining homology between MPXV and immunogenic VACV-derived peptides.

Vaccine

January 2025

Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA. Electronic address:

The mpox virus (MPXV) came to global attention with the 2022 global outbreak. Current vaccination and post-exposure prophylaxis against MPXV consists of live vaccinia whole virus-based vaccines including ACAM2000®, JYNNEOS™, and LC16m8 originally developed against smallpox. Here, we analyzed 152 vaccinia-derived peptides we identified by mass spectrometry for homology with MPXV-1 and MPXV-2 sequences to evaluate their potential relevance to MPXV-specific immunity.

View Article and Find Full Text PDF

Objective: Infants are at a high risk of developing anaemia, which can arise from various causes, including inappropriate feeding practices. However, few infants attend anaemia screening programmes due to poor cooperation and being time-consuming. This study evaluated the accuracy of noninvasive total haemoglobin (Hb) spot-check monitoring as part of anaemia screening in healthy infants, compared with the conventional laboratory method.

View Article and Find Full Text PDF

Objectives: Assess the effectiveness of ring vaccination in controlling an Ebola virus outbreak in the Democratic Republic of Congo.

Methods: This analysis focuses on two areas of the Democratic Republic of Congo, Beni and Butembo/Katwa, which were affected during the 2018-2020 Ebola outbreak. To simulate Ebola virus transmission, we used a spatially explicit agent-based model with households, health care facilities, and Ebola treatment units.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!