The nasal route has been used for many years for the local treatment of nasal diseases. More recently, this route has been gaining momentum, due to the possibility of targeting the central nervous system (CNS) from the nasal cavity, avoiding the blood-brain barrier (BBB). In this area, the use of lipid nanoparticles, such as nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN), in nasal formulations has shown promising outcomes on a wide array of indications such as brain diseases, including epilepsy, multiple sclerosis, Alzheimer's disease, Parkinson's disease and gliomas. Herein, the state of the art of the most recent literature available on in vitro studies with nasal formulations of lipid nanoparticles is discussed. Specific in vitro cell culture models are needed to assess the cytotoxicity of nasal formulations and to explore the underlying mechanism(s) of drug transport and absorption across the nasal mucosa. In addition, different studies with 3D nasal casts are reported, showing their ability to predict the drug deposition in the nasal cavity and evaluating the factors that interfere in this process, such as nasal cavity area, type of administration device and angle of application, inspiratory flow, presence of mucoadhesive agents, among others. Notwithstanding, they do not preclude the use of confirmatory in vivo studies, a significant impact on the 3R (replacement, reduction and refinement) principle within the scope of animal experiments is expected. The use of 3D nasal casts to test nasal formulations of lipid nanoparticles is still totally unexplored, to the authors best knowledge, thus constituting a wide open field of research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400558 | PMC |
http://dx.doi.org/10.3390/ph14080711 | DOI Listing |
Eur J Med Chem
December 2024
CERES BRAIN Therapeutics, Paris, France. Electronic address:
Dodecyl creatine ester (DCE) is a creatine prodrug currently developed for brain diseases, including creatine transporter deficiency (CTD), an incurable rare genetic disease. A dual strategy combining a prodrug to bypass the non-functional creatine transporter and its delivery via the nose-to-brain pathway has been proposed to replenish creatine levels in cerebral cells, particularly in neurons of CTD patients. In vitro and in vivo studies in various animal models, including wild-type non-human primates and creatine transporter deficient mice, show that formulated DCE, when administered intranasally, achieves significant cerebral distribution up to the target cells, the neurons, and modulates the expression of neuronal markers related to cognitive function at doses intended for patients.
View Article and Find Full Text PDFRhinology
December 2024
Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
Background: Corticosteroids are used in managing Chronic Rhinosinusitis (CRS) through several formulations, including oral steroids and nasal sprays. More recently, incorporating concentrated budesonide respules into high-volume saline irrigations has been proposed to enhance the penetration of topical steroids into the paranasal sinuses. We aim to evaluate the safety and efficacy of budesonide nasal irrigation (BNI) in managing CRS.
View Article and Find Full Text PDFChondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes.
View Article and Find Full Text PDFJ Control Release
December 2024
Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
Oxycodone hydrochloride (HCl) extended release (ER) tablet is an abuse-deterrent formulation that uses a physical barrier to make it more difficult to crush tablets prior to abuse via various routes. A previously conducted in vivo pharmacokinetics (PK) study showed that particle size exhibited significant effects on PK. Here, a computational modeling study using a novel combined computational fluid dynamics and physiologically based PK model was applied to better understand the mechanisms that produce differences in PK according to particle size and formulation type for nasally insufflated oxycodone HCl immediate release (IR) and ER ts.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, United States. Electronic address:
Neurogenic hypertension (NH) is characterized by heightened sympathetic activity mediated by angiotensin II in specific brain areas including the paraventricular nucleus and circumventricular organs. While strategies targeting sympathetic activity have shown effectiveness in managing NH, their invasive nature hinders their widespread clinical adoption. Conversely, nose-to-brain drug delivery is emerging as a promising approach to access the brain with reduced invasiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!