Asian Soybean Rust (ASR), a disease caused by , causing yield losses up to 90%. The control is based on the fungicides which may generate resistant fungi. The activation of the plant defense system, should help on ASR control. In this study, secondary metabolites of LV strain were applied on spore germination and the expression of defense genes in infected soybean plants. The F4A fraction and the pure metabolites were used. In vitro, 10 µg mL of F4A reduced spore germination by 54%, while 100 µg mL completely inhibited. Overexpression of phenylalanine ammonia lyase (PAL), -methyltransferase (OMT) and pathogenesis related protein-2 (PR-2; glucanases) defense-related genes were detected 24 and 72 h after soybean sprouts were sprayed with an organocopper antimicrobial compound (OAC). Under greenhouse conditions, the best control was observed in plants treated with 60 µg mL of PCA, which reduced ASR severity and lesion frequency by 75% and 43%, respectively. Plants sprayed with 2 and 20 µg mL of F4A also decreased severity (41%) and lesion frequency (32%). The significant reduction in spore germination ASR in plant suggested that the strain of these metabolites are effective against , and they can be used for ASR control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400991PMC
http://dx.doi.org/10.3390/plants10081495DOI Listing

Publication Analysis

Top Keywords

spore germination
12
secondary metabolites
8
metabolites strain
8
asian soybean
8
soybean rust
8
asr control
8
µg f4a
8
lesion frequency
8
asr
5
strain decrease
4

Similar Publications

Tsetse flies and trypanosomosis significantly impact bovine production and human health in sub-Saharan Africa, exacerbating underdevelopment, malnutrition, and poverty. Despite various control strategies, long-term success has been limited. This study evaluates the combined use of entomopathogenic fungi (EPF) and the sterile insect technique (SIT) to combat tsetse flies.

View Article and Find Full Text PDF

Bifidobacteria antagonize the life cycle of Clostridioides difficile.

Microb Pathog

December 2024

Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos (CCT- La Plata CONICET, CIC-PBA, Facultad de Ciencias Exactas, UNLP), Argentina; Cátedra de Microbiología. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP), Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina. Electronic address:

Clostridioides difficile is a spore-forming pathogen capable of causing severe disease in humans. Critical stages in the biological cycle of this microorganism include sporogenesis/germination and toxin production by vegetative cells. Antagonizing these pivotal events could aid in prevention and treatment to manage this pathogen.

View Article and Find Full Text PDF

Efficient Control of Head Blight and Reduction of Deoxynivalenol Accumulation by a Novel Nanopartner-Based Strategy.

Environ Sci Technol

December 2024

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Chemical control of head blight (FHB) in wheat plants is often challenged by the resistance outbreak and deoxynivalenol (DON) accumulation. Developing green partners for fungicides is crucial for reducing fungal growth, mycotoxin contamination, and agricultural fungicides input. Herein, we investigated the mechanism of MgO nanoparticles (NPs) in controlling FHB.

View Article and Find Full Text PDF

Molds of the genus Fusarium infect nearly all types of grain, causing significant yield and quality losses. Many species of this genus produce mycotoxins, which pose significant risks to human and animal health. In beer production, the complex interaction between primary fungal metabolites and secondarily modified mycotoxins in barley, malt, and beer complicates the situation, highlighting the need for effective analytical methods to quickly and accurately monitor these toxins.

View Article and Find Full Text PDF

Talarergosteroids A-C: Three Unusual Steroid-Polyketone Conjugates with Antifungal Activity from a Derived Fungus sp.

J Agric Food Chem

December 2024

School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.

Three previously undescribed steroid-polyketone conjugates, talarergosteroids A-C (-), together with talarergosteroid D (), which was first identified from a natural source, were isolated from a derived fungus sp. SCNU-F0041. Compounds and bear a complicated 6/6/6/5/6/6 hexacyclic ring system characterized by an oxaspiro[5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!