Direct Amperometric Sensing of Fish Nodavirus RNA Using Gold Nanoparticle/DNA-Based Bioconjugates.

Pathogens

Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Sensors and Biosensors Group, Tunis Faculty of Science, University of Tunis El Manar, Tunis 2092, Tunisia.

Published: July 2021

We describe the design of a simple and highly sensitive electrochemical bioanalytical method enabling the direct detection of a conserved RNA region within the capsid protein gene of a fish nodavirus, making use of nanostructured disposable electrodes. To achieve this goal, we select a conserved region within the nodavirus RNA2 segment to design a DNA probe that is tethered to the surface of nanostructured disposable screen-printed electrodes. In a proof-of-principle test, a synthetic RNA sequence is detected based on competitive hybridization between two oligonucleotides (biotinylated reporter DNA and target RNA) complimentary to a thiolated DNA capture probe. The method is further validated using extracted RNA samples obtained from healthy carrier and clinically infected fish specimens. In parallel, the sensitivity of the newly described biosensor is compared with a new real-time RT-PCR protocol. The current differences measured in the negative control and in presence of each concentration of target RNA are used to determine the dynamic range of the assay. We obtain a linear response (R = 0.995) over a range of RNA concentrations from 0.1 to 25 pM with a detection limit of 20 fM. The results are in good agreement with the results found by the RT-qPCR. This method provides a promising approach toward a more effective diagnosis and risk assessment of viral diseases in aquaculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398327PMC
http://dx.doi.org/10.3390/pathogens10080932DOI Listing

Publication Analysis

Top Keywords

fish nodavirus
8
nanostructured disposable
8
target rna
8
rna
7
direct amperometric
4
amperometric sensing
4
sensing fish
4
nodavirus rna
4
rna gold
4
gold nanoparticle/dna-based
4

Similar Publications

Nervous necrosis virus (NNV), a member of the Nodavirus genus, is a highly contagious disease that is found all over the world. As of right now, there aren't many reliable commercial vaccines available to combat this infection. In a previous study, we isolated a Mandarin fish (Siniperca chuatsi)-derived NNV strain, tentatively named MFNNV.

View Article and Find Full Text PDF

One of the most highly induced genes in zebrafish (Danio rerio) larvae after infection with the nodavirus red-spotted grouper nervous necrosis virus (RGNNV) was a member of the immunoglobulin superfamily (IgSF), which has remained uncharacterized and erroneously annotated in zebrafish and other fish species as galectin 17 (lgals17). We characterized this gene and named it immunoglobulin (Ig)-like domain-containing protein (igldcp), a new member of the IgSF that does not possess orthologs in mammals. Igldcp expression is induced by viral infection and it belongs to the group of interferon-stimulated genes (ISGs).

View Article and Find Full Text PDF

Haploid embryonic stem cells (ESCs), which combine the properties of haploidy and pluripotency, hold significant potential for advancing developmental biology and reproductive technology. However, while previous research has largely focused on haploid ESCs in freshwater species like Japanese medaka (), little is known about their counterparts in marine species. This study hypothesizes that haploid ESCs from marine fish could offer unique insights and tools for genetic and virological research.

View Article and Find Full Text PDF

Identification of a Novel β-Defensin Gene in Gilthead Seabream (Sparus aurata).

Mar Biotechnol (NY)

December 2024

Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.

The excessive use of antibiotics in aquaculture favors the natural selection of multidrug-resistant bacteria, and antimicrobial peptides (AMPs) could be a promising alternative to this problem. The most studied AMPs in teleost fish are piscidins, hepcidins, and β-defensins. In this work, we have found a new gene (defb2) encoding a type 2 β-defensin in the genome of gilthead seabream, a species chosen for its economic interest in aquaculture.

View Article and Find Full Text PDF

Grouper TIM-1 promotes nodavirus infection by inhibiting immune and inflammation response.

Fish Shellfish Immunol

October 2024

College of Marine Sciences, South China Agricultural University, Guangzhou, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China. Electronic address:

T-cell/transmembrane immunoglobulin and mucin domain-containing (TIM) protein family has attracted particular attention because of their broad immune functions and the response to viral infections. TIM-1, a member of the TIM family, has been demonstrated to play an important role in viral infections. However, its roles during fish nodavirus infection still remained largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!