Recently, research conducted on tread compounds with liquid butadiene rubber (LqBR) have been conducted in the tire industry. In particular, the introduction of functional groups into LqBRs is expected to lower hysteresis loss caused by the free chain ends of LqBR. To study this, LqBRs with functional groups at different positions were synthesized. The occurrences of in-chain and chain-end functionalization of functionalized LqBRs (F-LqBRs) were confirmed, the microstructure and functionalization efficiency of F-LqBRs were calculated through the characterizations. This novel functionalization technology was beneficial not only to immobilizing the free chain ends of LqBRs to the surfaces of silica to decrease the number of free chain ends, but also chemically bonding the LqBR chains on the base polymer through a crosslinking reaction to enhance the filler-rubber interaction. The effects of the functional group position and number of the free chain ends on the physical properties and hysteresis of the compounds were investigated by partially replacing the treated distillate aromatic extract (TDAE) oil with LqBR in silica-filled rubber compounds. The results showed that compounds that had applied DF-LqBR with both end functionalization performed better, including improving the silica dispersion, higher extraction resistance, and lower rolling resistance, than other F-LqBRs compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397989 | PMC |
http://dx.doi.org/10.3390/polym13162698 | DOI Listing |
Food Sci Nutr
January 2025
Food Engineering Department, Engineering Faculty Necmettin Erbakan University Konya Türkiye.
Alternative flours can reveal beneficial health effects. The aim of this study was to evaluate and compare the effects of dietary fibers (DFs) of coconut and carob flours on colonic microbiota compositions and function. Coconut flour DFs were found to be dominated by mannose-containing polysaccharides by gas chromatography (GC)/MS and spectrophotometer, whereas glucose and uronic acid were the main monosaccharide moieties in carob flour DFs.
View Article and Find Full Text PDFWater Res X
May 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Pharmaceutical Development Biologicals, TIP, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany.
Polysorbates, in particular polysorbate (PS) 20 and 80, are the most commonly used surfactants for stabilising biotherapeutics produced by biotechnological processes. PSs are derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids of varying chain length and degree of saturation. In the past, these surfactants have been reported to have specific liabilities.
View Article and Find Full Text PDFTher Adv Infect Dis
January 2025
Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
Background: Human herpesvirus-8 (HHV8) can present with cutaneous or extracutaneous manifestations. While violaceous skin lesions characterize cutaneous Kaposi sarcoma, extracutaneous HHV8 is challenging to diagnose due to nonspecific symptoms.
Objectives: We evaluated the role of microbial cell-free DNA next-generation sequencing (mcfDNA NGS) in diagnosing HHV8-related illness.
Angew Chem Int Ed Engl
January 2025
Fuzhou University College of Chemical Engineering, College of Chemical Engineering, CHINA.
Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!