This work investigates the effects of very small amounts of fumed silica on the morphology and on the rheological and mechanical behaviour of polypropylene nanocomposites and on their photo-oxidation behaviour. Polypropylene nanocomposites were prepared using a twin-screw corotating extruder with 0, 1 and 2 wt/wt% of SiO. Morphological, mechanical, thermomechanical and rheological properties were examined. It was found that the viscosity of the matrix is reduced by the presence of the silica nanoparticles, suggesting a poor adhesion between the two phases and probably some lubricating effect. On the contrary, the mechanical and, in particular, the thermomechanical properties of the matrix are considerably improved by the presence of the silica. In particular, elastic modulus and tensile strength increases remarkably, and this effect becomes more and more remarkable with an increasing temperature. As for the photo-oxidation behaviour, the presence of silica improves the photostability of the polypropylene matrix. This effect has been attributed to both the barrier to the oxygen and to the absorbance of the UV radiation from the silica nanoparticles. Finally, no significant effect of the silica nanoparticles has been put in evidence on the crystallisation behaviour of the polypropylene. As for the effect of the silica content, the difference in the properties of the two nanocomposites is relatively small and all the measured properties depend much less than linearly with its amount. This has been correlated with the reaggregation of the nanoparticles that, having a larger size, decrease the contact area between the matrix and the filler.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399021PMC
http://dx.doi.org/10.3390/polym13162673DOI Listing

Publication Analysis

Top Keywords

photo-oxidation behaviour
12
behaviour polypropylene
12
presence silica
12
silica nanoparticles
12
silica
8
polypropylene nanocomposites
8
mechanical thermomechanical
8
behaviour
5
investigation properties
4
properties photo-oxidation
4

Similar Publications

Article Synopsis
  • Protein crosslinks caused by oxidative stress are linked to diseases like atherosclerosis, Alzheimer's, and Parkinson's, but their specific nature and locations in proteins remain unclear.
  • A new method utilizing "light" and "heavy" isotope-labeled reagents for efficient amine labeling of crosslinked peptides has shown improved identification and quantification over previous techniques.
  • This approach has led to the successful identification of novel crosslinks in proteins like β-casein and α-synuclein, as well as effective mapping of disulfide bonds in serum albumin, highlighting its versatility for studying protein modifications.
View Article and Find Full Text PDF

Water resource management has become a hot button issue in recent decades. Countries facing water shortages as a result to climate change must adapt their water supply. The reuse of wastewater treatment plant effluents is becoming increasingly common around the world.

View Article and Find Full Text PDF

Porous Bimetallic Ti-MOFs for Photocatalytic Oxidation of Amines in Air.

Inorg Chem

October 2024

College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.

A family of microporous titanium-containing metal-organic frameworks (denoted as MTi-CPCDC, M = Mn, Co, Ni) has been synthesized by using a bimetallic [MTi(μ-O)(COO)] cluster and a tritopic carbazole-based organic ligand HCPCDC. MTi-CPCDC are stable and display permanent porosity for N and CO uptake, ranking among the most porous titanium-based metal-organic frameworks. MTi-CPCDC crystals exhibit n-type semiconductor behavior.

View Article and Find Full Text PDF

Histidine (His) photo-oxidation has been widely investigated with several transient and stable products characterized, especially for aerobic conditions. Due to its role and structure, His-side chain can be a key player in the quenching of excited states such as the triplet state of the photosensitizer 3-carboxybenzophenone (CB*). The capacity of His and its derivatives to quench CB* under anaerobic conditions are characterized in the current study by laser flash photolysis, with the resulting oxidation products examined by mass spectrometry to determine the reaction mechanism.

View Article and Find Full Text PDF

Molecular hosts with functional cavities can emulate enzymatic behavior through selective encapsulation of substrates, resulting in high chemo-, regio-, and stereoselective product formation. It is still challenging to synthesize enzyme-mimicking hosts that exhibit a narrow substrate scope that relies upon the recognition of substrates based on the molecular size. Herein, we introduce a Pd self-assembled water-soluble molecular capsule [ ] () that was formed through the self-assembly of a ligand (4',4‴'-(1,4-phenylene)bis(1',4'-dihydro-[4,2':6',4″-terpyridine]-3',5'-dicarbonitrile)) with the acceptor -[(en)Pd(NO)] [en = ethane-1,2-diamine] ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!