The Advanced Metering Infrastructure (AMI) data represent a source of information in real time not only about electricity consumption but also as an indicator of other social, demographic, and economic dynamics within a city. This paper presents a Data Analytics/Big Data framework applied to AMI data as a tool to leverage the potential of this data within the applications in a Smart City. The framework includes three fundamental aspects. First, the architectural view places AMI within the Smart Grids Architecture Model-SGAM. Second, the methodological view describes the transformation of raw data into knowledge represented by the DIKW hierarchy and the NIST Big Data interoperability model. Finally, a binding element between the two views is represented by human expertise and skills to obtain a deeper understanding of the results and transform knowledge into wisdom. Our new view faces the challenges arriving in energy markets by adding a binding element that gives support for optimal and efficient decision-making. To show how our framework works, we developed a case study. The case implements each component of the framework for a load forecasting application in a Colombian Retail Electricity Provider (REP). The MAPE for some of the REP's markets was less than 5%. In addition, the case shows the effect of the binding element as it raises new development alternatives and becomes a feedback mechanism for more assertive decision making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402541 | PMC |
http://dx.doi.org/10.3390/s21165650 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!