In this contribution, we present a high-speed, multiplex, grating spectrometer based on a spectral coding approach that is founded on principles of compressive sensing. The spectrometer employs a single-pixel InGaAs detector to measure the signals encoded by an amplitude spatial light modulator (digital micromirror device, DMD). This approach leads to a speed advantage and multiplex sensitivity advantage atypical for standard dispersive systems. Exploiting the 18.2 kHz pattern rate of the DMD, we demonstrated 4.2 ms acquisition times for full spectra with a bandwidth of 450 nm (5250-4300 cm; 1.9-2.33 µm). Due to the programmability of the DMD, spectral regions of interest can be chosen freely, thus reducing acquisition times further, down to the sub-millisecond regime. The adjustable resolving power of the system accessed by means of computer simulations is discussed, quantified for different measurement modes, and verified by comparison with a state-of-the-art Fourier-transform infrared spectrometer. We show measurements of characteristic polymer absorption bands in different operation regimes of the spectrometer. The theoretical multiplex advantage of 8 was experimentally verified by comparison of the noise behavior of the spectral coding approach and a standard line-scan approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401756 | PMC |
http://dx.doi.org/10.3390/s21165563 | DOI Listing |
Nat Commun
March 2023
Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husarg. 3, SE-75124, Uppsala, Sweden.
Reaching sub-millisecond 3D tracking of individual molecules in living cells would enable direct measurements of diffusion-limited macromolecular interactions under physiological conditions. Here, we present a 3D tracking principle that approaches the relevant regime. The method is based on the true excitation point spread function and cross-entropy minimization for position localization of moving fluorescent reporters.
View Article and Find Full Text PDFBiomolecules
January 2023
Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic.
Time-resolved femtosecond-stimulated Raman spectroscopy (FSRS) provides valuable information on the structural dynamics of biomolecules. However, FSRS has been applied mainly up to the nanoseconds regime and above 700 cm, which covers only part of the spectrum of biologically relevant time scales and Raman shifts. Here we report on a broadband (~200-2200 cm) dual transient visible absorption (visTA)/FSRS set-up that can accommodate time delays from a few femtoseconds to several hundreds of microseconds after illumination with an actinic pump.
View Article and Find Full Text PDFAdv Mater
February 2022
Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France.
Molecular spin-crossover (SCO) compounds constitute a promising class of photoactive materials exhibiting efficient photoinduced phase transitions (PIPTs). Taking advantage of the unique, picture-perfect reproducibility of the spin-transition properties in the compound [Fe(HB(1,2,4-triazol-1-yl) ) ], the spatiotemporal dynamics of the PIPT within the thermodynamic metastability (hysteretic) region of a single crystal is dissected, using pump-probe optical microscopy. Beyond a threshold laser-excitation density, complete PIPTs are evidenced, with conversion rates up to 200 switched molecules per absorbed photon.
View Article and Find Full Text PDFSensors (Basel)
August 2021
RECENDT-Research Center for Non-Destructive Testing GmbH, Science Park 2, Altenberger Str. 69, 4040 Linz, Austria.
In this contribution, we present a high-speed, multiplex, grating spectrometer based on a spectral coding approach that is founded on principles of compressive sensing. The spectrometer employs a single-pixel InGaAs detector to measure the signals encoded by an amplitude spatial light modulator (digital micromirror device, DMD). This approach leads to a speed advantage and multiplex sensitivity advantage atypical for standard dispersive systems.
View Article and Find Full Text PDFBiosensors (Basel)
November 2020
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
The Stopped-Flow apparatus (SF) tracks molecular events by mixing the reactants in sub-millisecond regimes. The reaction of intrinsically or extrinsically labeled biomolecules can be monitored by recording the fluorescence, (), anisotropy, (), polarization, (), or FRET, (), traces at nanomolar concentrations. These kinetic measurements are critical to elucidate reaction mechanisms, structural information, and even thermodynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!