In this contribution, we present a high-speed, multiplex, grating spectrometer based on a spectral coding approach that is founded on principles of compressive sensing. The spectrometer employs a single-pixel InGaAs detector to measure the signals encoded by an amplitude spatial light modulator (digital micromirror device, DMD). This approach leads to a speed advantage and multiplex sensitivity advantage atypical for standard dispersive systems. Exploiting the 18.2 kHz pattern rate of the DMD, we demonstrated 4.2 ms acquisition times for full spectra with a bandwidth of 450 nm (5250-4300 cm; 1.9-2.33 µm). Due to the programmability of the DMD, spectral regions of interest can be chosen freely, thus reducing acquisition times further, down to the sub-millisecond regime. The adjustable resolving power of the system accessed by means of computer simulations is discussed, quantified for different measurement modes, and verified by comparison with a state-of-the-art Fourier-transform infrared spectrometer. We show measurements of characteristic polymer absorption bands in different operation regimes of the spectrometer. The theoretical multiplex advantage of 8 was experimentally verified by comparison of the noise behavior of the spectral coding approach and a standard line-scan approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401756PMC
http://dx.doi.org/10.3390/s21165563DOI Listing

Publication Analysis

Top Keywords

sub-millisecond regime
8
spectral coding
8
coding approach
8
acquisition times
8
verified comparison
8
spectral-coding-based compressive
4
compressive single-pixel
4
single-pixel nir
4
nir spectroscopy
4
spectroscopy sub-millisecond
4

Similar Publications

Real-time single-molecule 3D tracking in E. coli based on cross-entropy minimization.

Nat Commun

March 2023

Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husarg. 3, SE-75124, Uppsala, Sweden.

Reaching sub-millisecond 3D tracking of individual molecules in living cells would enable direct measurements of diffusion-limited macromolecular interactions under physiological conditions. Here, we present a 3D tracking principle that approaches the relevant regime. The method is based on the true excitation point spread function and cross-entropy minimization for position localization of moving fluorescent reporters.

View Article and Find Full Text PDF

Time-resolved femtosecond-stimulated Raman spectroscopy (FSRS) provides valuable information on the structural dynamics of biomolecules. However, FSRS has been applied mainly up to the nanoseconds regime and above 700 cm, which covers only part of the spectrum of biologically relevant time scales and Raman shifts. Here we report on a broadband (~200-2200 cm) dual transient visible absorption (visTA)/FSRS set-up that can accommodate time delays from a few femtoseconds to several hundreds of microseconds after illumination with an actinic pump.

View Article and Find Full Text PDF

Molecular spin-crossover (SCO) compounds constitute a promising class of photoactive materials exhibiting efficient photoinduced phase transitions (PIPTs). Taking advantage of the unique, picture-perfect reproducibility of the spin-transition properties in the compound [Fe(HB(1,2,4-triazol-1-yl) ) ], the spatiotemporal dynamics of the PIPT within the thermodynamic metastability (hysteretic) region of a single crystal is dissected, using pump-probe optical microscopy. Beyond a threshold laser-excitation density, complete PIPTs are evidenced, with conversion rates up to 200 switched molecules per absorbed photon.

View Article and Find Full Text PDF

In this contribution, we present a high-speed, multiplex, grating spectrometer based on a spectral coding approach that is founded on principles of compressive sensing. The spectrometer employs a single-pixel InGaAs detector to measure the signals encoded by an amplitude spatial light modulator (digital micromirror device, DMD). This approach leads to a speed advantage and multiplex sensitivity advantage atypical for standard dispersive systems.

View Article and Find Full Text PDF

The Stopped-Flow apparatus (SF) tracks molecular events by mixing the reactants in sub-millisecond regimes. The reaction of intrinsically or extrinsically labeled biomolecules can be monitored by recording the fluorescence, (), anisotropy, (), polarization, (), or FRET, (), traces at nanomolar concentrations. These kinetic measurements are critical to elucidate reaction mechanisms, structural information, and even thermodynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!