Molecularly imprinted polymers (MIPs) come with the promise to be highly versatile, useful artificial receptors for sensing a wide variety of analytes. Despite a very large body of literature on imprinting, the number of papers addressing real-life biological samples and analytes is somewhat limited. Furthermore, the topic of MIP-based sensor design is still, rather, in the research stage and lacks wide-spread commercialization. This review summarizes recent advances of MIP-based sensors targeting biological species. It covers systems that are potentially interesting in medical applications/diagnostics, in detecting illicit substances, environmental analysis, and in the quality control of food. The main emphasis is placed on work that demonstrates application in real-life matrices, including those that are diluted in a reasonable manner. Hence, it does not restrict itself to the transducer type, but focusses on both materials and analytical tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400518 | PMC |
http://dx.doi.org/10.3390/s21165550 | DOI Listing |
Mikrochim Acta
January 2025
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).
View Article and Find Full Text PDFFood Chem
January 2025
Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China. Electronic address:
In this study, we designed a molecularly imprinted electrochemical sensor based on the reduced graphene oxide/polydopamine@Mxene (RPM) and FeCu-MOF for the detection of antiviral drug ribavirin (RBV). The RPM composite enhances the active surface area and electron transport capacity of the sensor, and the incorporation of FeCu-MOF can not only further improve the catalytic performance of the material, but also enables the sensor to harness the electrical reduction signal of HO. Furthermore, we developed an optimized molecularly imprinted polymer via density functional theory (DFT) to enhance the sensor's specificity and sensitivity for RBV detection.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
School of Energy and Environmental Engineering, University of Science and Technology Beijing, 100083China.
Phthalates, known as phthalate esters (PAEs), are among the most ubiquitous pervasive env7ironmental endocrine disruptors (EEDs), extensively utilized globally in various facets of modern life due to their irreplaceable role as plasticizers. The exponential production and utilization of plastic goods have substantially escalated plastic waste accumulation. Consequently, PAEs have infiltrated the environment, contaminating food and drinking water reservoirs, posing notable threats to human health.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.
Dexamethasone sodium phosphate (DSP) and betamethasone sodium phosphate (BSP) imprinted hydrogels embedded with two-dimensional photonic crystals (2DPC) were developed as hormones-sensitive photonic hydrogel sensors with highly sensitive, selective, anti-interference and reproducible recognition capability. The DSP/BSP molecularly imprinted photonic hydrogels (denoted as DSP-MIPH and BSP-MIPH) can specifically recognize DSP/BSP by rebinding the DSP/BET molecules to nanocavities in the hydrogel network. This recognition is enabled by the similar shape, size, and binding sites of the nanocavities to the target molecules.
View Article and Find Full Text PDFAnalyst
January 2025
Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
Tetramethylpyrazine (TMP) is a compound known for its natural health benefits, but current detection methods for TMP are overly expensive and time-consuming. In this study, we developed functional materials with TMP molecular recognition properties using molecularly imprinted technology. As TMP does not produce electrochemical signals in the detection potential range, hexacyanoferrate was selected as a redox probe, combined with the highly conductive polymer PEDOT:PSS to enhance electrode conductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!