The characterisation and monitoring of viscous fluids have many important applications. This paper reports a refined 'dipstick' method for ultrasonic measurement of the properties of viscous fluids. The presented method is based on the comparison of measurements of the ultrasonic properties of a waveguide that is immersed in a viscous liquid with the properties when it is immersed in a reference liquid. We can simultaneously determine the temperature and viscosity of a fluid based on the changes in the velocity and attenuation of the elastic shear waves in the waveguide. Attenuation is mainly dependent on the viscosity of the fluid that the waveguide is immersed in and the speed of the wave mainly depends on the surrounding fluid temperature. However, there is a small interdependency since the mass of the entrained viscous liquid adds to the inertia of the system and slows down the wave. The presented measurements have unprecedented precision so that the change due to the added viscous fluid mass becomes important and we propose a method to model such a 'viscous effect' on the wave propagation velocity. Furthermore, an algorithm to correct the velocity measurements is presented. With the proposed correction algorithm, the experimental results for kinematic viscosity and temperature show excellent agreement with measurements from a highly precise in-lab viscometer and a commercial resistance temperature detector (RTD) respectively. The measurement repeatability of the presented method is better than 2.0% in viscosity and 0.5% in temperature in the range from 8 to 300 cSt viscosity and 40 to 90 °C temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401479PMC
http://dx.doi.org/10.3390/s21165543DOI Listing

Publication Analysis

Top Keywords

viscous fluids
12
temperature viscosity
8
presented method
8
waveguide immersed
8
viscous liquid
8
viscosity fluid
8
temperature
7
viscosity
6
viscous
6
simultaneous measurements
4

Similar Publications

The absence of a clear consensus on the definition and significance of fascia and the indiscriminate use of the term throughout the clinical and scientific literature has led to skepticism regarding its importance in the human body. To address this challenge, we propose that: (1) fasciae, and the fascial interstitia within them, constitute an anatomical system, defined as a layered body-wide multiscale network of connective tissue that allows tensional loading and shearing mobility along its interfaces; (2) the fascial system comprises four anatomical organs: the superficial fascia, musculoskeletal (deep) fascia, visceral fascia, and neural fascia; (3) these organs are further composed of anatomical structures, some of which are eponymous; (4) all these fascial organs and their structural components contain variable combinations and arrangements of the four classically defined tissues: epithelial, connective, muscle, and neural; (5) the overarching functions of the fascial system arise from the contrasting biomechanical properties of the two basic types of layers distributed throughout the system: one predominantly collagenous and relatively stiff, the other rich in hyaluronic acid and viscous, allowing for the free flow of fluid; (6) the topographical organization of these layers in different locations is related to local variations in function (e.g.

View Article and Find Full Text PDF

The colon possesses a unique physiological environment among human organs, where there is a highly viscous body fluid layer called the mucus layer above colonic epithelial cells. Dysfunction of the mucus layer not only contributes to the occurrence of colorectal cancer (CRC) but also plays an important role in the development of chemoresistance in CRC. Although viscosity is an essential property of the mucus layer, it remains elusive how viscosity affects chemoresistance in colon cancer cells.

View Article and Find Full Text PDF

Capsules, which are potentially-active fluid droplets enclosed in a thin elastic membrane, experience large deformations when placed in suspension. The induced fluid-structure interaction stresses can potentially lead to rupture of the capsule membrane. While numerous experimental studies have focused on the rheological behavior of capsules until rupture, there remains a gap in understanding the evolution of their mechanical properties and the underlying mechanisms of damage and breakup under flow.

View Article and Find Full Text PDF

Supercritical CO, as an environmentally friendly and pollution-free fluid, has been applied in various EOR techniques such as CO flooding. However, the low viscosity of the gas leads to issues such as early breakthrough, viscous fingering, and gravity override in practical applications. Although effective mobility-control methods, such as CO WAG (water alternating gas)-, CO foam-, and gel-based methods, have been developed to mitigate these phenomena, they do not fundamentally solve the problem of the high gas-oil mobility ratio, which leads to reduced gas sweep efficiency.

View Article and Find Full Text PDF

Objectives: The aim of this study was to ivnestigate the effect of simulated gastrointestinal viscosity, surface tension, and pH on the dissolution rate of two commercial candesartan cilexetil (CC) products.

Materials And Methods: dissolution of two commercial CC products and immediate release of 16 mg of CC were applied under two conditions: (1) the requirements of the United States Pharmacopeia (USP) and (2) conditions physiologically related to the gastrointestinal tract mimicking viscous food intake. The solubility of CC in different simulation fluids was also measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!