Deep Convolutional Clustering-Based Time Series Anomaly Detection.

Sensors (Basel)

Department of Automatic Control and Complex Systems, University of Duisburg-Essen, 47057 Duisburg, Germany.

Published: August 2021

This paper presents a novel approach for anomaly detection in industrial processes. The system solely relies on unlabeled data and employs a 1D-convolutional neural network-based deep autoencoder architecture. As a core novelty, we split the autoencoder latent space in discriminative and reconstructive latent features and introduce an auxiliary loss based on k-means clustering for the discriminatory latent variables. We employ a Top-K clustering objective for separating the latent space, selecting the most discriminative features from the latent space. We use the approach to the benchmark Tennessee Eastman data set to prove its applicability. We provide different ablation studies and analyze the method concerning various downstream tasks, including anomaly detection, binary and multi-class classification. The obtained results show the potential of the approach to improve downstream tasks compared to standard autoencoder architectures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400863PMC
http://dx.doi.org/10.3390/s21165488DOI Listing

Publication Analysis

Top Keywords

anomaly detection
12
latent space
12
downstream tasks
8
latent
5
deep convolutional
4
convolutional clustering-based
4
clustering-based time
4
time series
4
series anomaly
4
detection paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!