This paper describes the use of microwave technology to identify anti-counterfeiting markers on banknotes. The proposed method is based on a robust near-field scanning microwave microscope specially developed to measure permittivity maps of heterogeneous paper specimens at the micrometer scale. The equipment has a built-in vector network analyzer to measure the reflection response of a near-field coaxial probe, which makes it a standalone and portable device. A new approach employing the information of a displacement laser and the cavity perturbation technique was used to determine the relationship between the dielectric properties of the specimens and the resonance response of the probe, avoiding the use of distance-following techniques. The accuracy of the dielectric measurements was evaluated through a comparative study with other well-established cavity methods, revealing uncertainties lower than 5%, very similar to the accuracy reported by other more sophisticated setups. The device was employed to determine the dielectric map of a watermark on a 20 EUR banknote. In addition, the penetration capabilities of microwave energy allowed for the detection of the watermark when concealed behind dielectric or metallic layers. This work demonstrates the benefits of this microwave technique as a novel method for identifying anti-counterfeiting features, which opens new perspectives with which to develop optically opaque markers only traceable through this microwave technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398156PMC
http://dx.doi.org/10.3390/s21165463DOI Listing

Publication Analysis

Top Keywords

anti-counterfeiting markers
8
permittivity maps
8
micrometer scale
8
scanning microwave
8
microwave microscope
8
microwave technique
8
microwave
6
detection anti-counterfeiting
4
markers permittivity
4
maps micrometer
4

Similar Publications

Introduction: Ginkgo Folium tablet (GFT) is a patented traditional Chinese medicine prepared from Ginkgo biloba leaves extract (GBE). However, the current quality indicators for GFT or GBE as designated by the Chinese Pharmacopoeia are insufficient in preventing counterfeit events.

Objective: This study aimed to putatively identify compounds in GFT and to further develop a quality marker (Q-marker) system for GFT.

View Article and Find Full Text PDF

Introduction: Shenlingbaizhu granule, a Traditional Chinese Medicine prescription comprising Renshen, Gancao, and Shanyao, is widely consumed in China nowadays.

Objective: The study tries to propose pharmacopoeia quality markers (Q-markers) to prevent counterfeiting involving Renshen, Gancao, and Shanyao.

Methodology: A novel strategy, that is, library-based ultra-high-performance liquid chromatography-quadrupole-orbitrap mass spectrometry, was used to analyse the lyophilised aqueous powder of Shenlingbaizhu granule.

View Article and Find Full Text PDF

Wushicha Granule, an over-the-counter-drug (OTC) prescription, consists of 19 traditional Chinese herbals medicines (CHMs), such as Chaihu, Hongcha, Chuanxiong, Houpo, and Gancao. The five however have not been effectively characterized by the quality-markers (Q-markers) system in current Pharmacopoeia. The study therefore established a novel database-aided ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry (UHPLC-Q-orbitrap MS/MS) strategy.

View Article and Find Full Text PDF

Profiling the spatial distributions and tissue changes of characteristic compounds with interspecific differences is critical to elucidate the complex species identification during tree species traceability, wood anti-counterfeiting verification and timber trade control. In this research, in order to visualize the spatial position of characteristic compounds in two species with similar morphology ( and ), a high coverage MALDI-TOF-MS imaging method was used to found the mass spectra fingerprints of different wood species. 2-Mercaptobenzothiazole matrix was used to spray wood tissue section to enhance the detection effect of metabolic molecules, and the mass spectrometry imaging data were obtained.

View Article and Find Full Text PDF

This paper describes the use of microwave technology to identify anti-counterfeiting markers on banknotes. The proposed method is based on a robust near-field scanning microwave microscope specially developed to measure permittivity maps of heterogeneous paper specimens at the micrometer scale. The equipment has a built-in vector network analyzer to measure the reflection response of a near-field coaxial probe, which makes it a standalone and portable device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!