Aims: Coronary computed tomography angiography (CCTA) is a first-line modality in the investigation of suspected coronary artery disease (CAD). Mapping of perivascular fat attenuation index (FAI) on routine CCTA enables the non-invasive detection of coronary artery inflammation by quantifying spatial changes in perivascular fat composition. We now report the performance of a new medical device, CaRi-Heart®, which integrates standardized FAI mapping together with clinical risk factors and plaque metrics to provide individualized cardiovascular risk prediction.

Methods And Results: The study included 3912 consecutive patients undergoing CCTA as part of clinical care in the USA (n = 2040) and Europe (n = 1872). These cohorts were used to generate age-specific nomograms and percentile curves as reference maps for the standardized interpretation of FAI. The first output of CaRi-Heart® is the FAI-Score of each coronary artery, which provides a measure of coronary inflammation adjusted for technical, biological, and anatomical characteristics. FAI-Score is then incorporated into a risk prediction algorithm together with clinical risk factors and CCTA-derived coronary plaque metrics to generate the CaRi-Heart® Risk that predicts the likelihood of a fatal cardiac event at 8 years. CaRi-Heart® Risk was trained in the US population and its performance was validated externally in the European population. It improved risk discrimination over a clinical risk factor-based model [Δ(C-statistic) of 0.085, P = 0.01 in the US Cohort and 0.149, P < 0.001 in the European cohort] and had a consistent net clinical benefit on decision curve analysis above a baseline traditional risk factor-based model across the spectrum of cardiac risk.

Conclusion: Mapping of perivascular FAI on CCTA enables the non-invasive detection of coronary artery inflammation by quantifying spatial changes in perivascular fat composition. We now report the performance of a new medical device, CaRi-Heart®, which allows standardized measurement of coronary inflammation by calculating the FAI-Score of each coronary artery. The CaRi-Heart® device provides a reliable prediction of the patient's absolute risk for a fatal cardiac event by incorporating traditional cardiovascular risk factors along with comprehensive CCTA coronary plaque and perivascular adipose tissue phenotyping. This integration advances the prognostic utility of CCTA for individual patients and paves the way for its use as a dual diagnostic and prognostic tool among patients referred for CCTA.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvab286DOI Listing

Publication Analysis

Top Keywords

coronary artery
12
clinical risk
12
coronary inflammation
8
computed tomography
8
clinical care
8
medical device
8
perivascular fat
8
risk
8
risk factors
8
plaque metrics
8

Similar Publications

Feasibility of on-site CT-FFR analysis on cardiac photon-counting CT in evaluation of hemodynamically significant stenosis in comparison to invasive catheter angiography.

Eur J Radiol

January 2025

Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. Electronic address:

Objectives: Coronary CT angiography (CCTA) is an excellent tool in ruling out coronary artery disease (CAD) but tends to overestimate especially highly calcified plaques. To reduce diagnostic invasive catheter angiographies (ICA), current guidelines recommend CT-FFR to determine the hemodynamic significance of coronary artery stenosis. Photon-Counting Detector CT (PCCT) revolutionized CCTA and may improve CT-FFR analysis in guiding patients.

View Article and Find Full Text PDF

Aims: To identify differences in CT-derived perivascular (PVAT) and epicardial adipose tissue (EAT) characteristics that may indicate inflammatory status differences between post-treatment acute myocardial infarction (AMI) and stable coronary artery disease (CAD) patients.

Methods And Results: A cohort of 205 post-AMI patients (age 59.8±9.

View Article and Find Full Text PDF

This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary artery disease. The methodology included data collection in a clinical environment, followed by data preparation and analysis using the 3D Slicer Platform for manual segmentation, and subsequently, the application of artificial intelligence models for automated segmentation, focusing on the efficiency of identifying the walls of the left ventricular. A total of 83 clinical routine exams were collected, each exam containing 50 slices, which is 4,150 images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!