A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Material and geometric effects on propulsion of a fish tail. | LitMetric

Material and geometric effects on propulsion of a fish tail.

Bioinspir Biomim

Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061, United States of America.

Published: September 2021

We investigate the effects of material flexibility and aspect ratio on the propulsion of flapping tails. The tail, which is assumed to deform in the bending direction only, is modeled using the Euler-Bernoulli beam theory. The hydrodynamic loads generated by the flapping motion are calculated using the three-dimensional unsteady vortex lattice method. The finite element method is used to solve the coupled time-dependent equations of motion using an implicit solver for time integration. The results show improvement in the thrust and propulsive efficiency over a specific range of non-dimensional flexibility defined by the ratio of the elastic forces to fluid pressure forces. Structural and flow characteristics associated with the improved performance are discussed. As for geometric effects, the performance depends on the excitation frequency. At low frequencies, the improvement is continuous with increasing the aspect ratio in a manner similar to that of rigid tails. At higher frequencies, the improvement is limited to a region defined by aspect ratios that are less than 0.5. The extent of the improvement depends on the flexibility.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/ac220eDOI Listing

Publication Analysis

Top Keywords

geometric effects
8
aspect ratio
8
frequencies improvement
8
material geometric
4
effects propulsion
4
propulsion fish
4
fish tail
4
tail investigate
4
investigate effects
4
effects material
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!