Single image super-resolution (SISR) has achieved significant performance improvements due to the deep convolutional neural networks (CNN). However, the deep learning-based method is computationally intensive and memory demanding, which limit its practical deployment, especially for mobile devices. Focusing on this issue, in this paper, we present a novel approach to compress SR networks by weight pruning. To achieve this goal, firstly, we explore a progressive optimization method to gradually zero out the redundant parameters. Then, we construct a sparse-aware attention module by exploring a pruning-based well-suited attention strategy. Finally, we propose an information multi-slicing network which extracts and integrates multi-scale features at a granular level to acquire a more lightweight and accurate SR network. Extensive experiments reflect the pruning method could reduce the model size without a noticeable drop in performance, making it possible to apply the start-of-the-art SR models in the real-world applications. Furthermore, our proposed pruning versions could achieve better accuracy and visual improvements than state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2021.08.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!