Alzheimer's disease (AD) is known as a complex multifactorial syndrome and both metal chelators and amyloid β peptide (Aβ) inhibitors show promise against AD. Herein, four small hybrid compounds have been designed and synthesized utilizing 8-hydroxyquinoline, pyridine or imidazole as chelators and benzimidazole as the recognition moiety for AD treatment. These conjugates can capture Cu from Aβ and become dimers upon Cu coordination and show high efficiency for both Cu elimination and Aβ assembly inhibition. Besides, these designed complexes can inhibit the production of Aβ-induced reactive oxygen species (ROS), protect mitochondria from damage, and improve the survival rate of neuron cells. Our work provides a new strategy to combine hydrophobic interaction and metal ion chelation to design amyloid inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2021.111591 | DOI Listing |
FEBS J
July 2011
Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Japan.
ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2).
View Article and Find Full Text PDF1. Two fractions of aryl acylamidase (EC 3.5.
View Article and Find Full Text PDF1. The serotonin (5-HT) sensitive brain aryl acylamidase (AAA) has received considerable attention due to its potential involvement in 5-HT action mechanism in CNS. 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!