Background: Tissue engineering is considered as a promising tool for remodeling the native cells microenvironment. In the present study, the effect of alginate hydrogel and collagen microspheres integrated with extracellular matrix components were evaluated in the decrement of apoptosis in human pancreatic islets.
Materials/methods: For three-dimensional culture, the islets were encapsulated in collagen microspheres, containing laminin and collagen IV and embedded in alginate scaffold for one week. After that the islets were examined in terms of viability, apoptosis, genes and proteins expression including BAX, BCL2, active caspase-3, and insulin. Moreover, the islets function was evaluated through glucose-induced insulin and C-peptide secretion assay. In order to evaluate the structure of the scaffolds and the morphology of the pancreatic islets in three-dimensional microenvironments, we performed scanning electron microscopy.
Results: Our findings showed that the designed hydrogel scaffolds significantly improved the islets viability using the reduction of activated caspase-3 and TUNEL positive cells.
Conclusions: The reconstruction of the destructed matrix with alginate hydrogels and collagen microspheres might be an effective step to promote the culture of the islets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acthis.2021.151775 | DOI Listing |
Int J Biol Macromol
January 2025
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China. Electronic address:
The healing of wounds in aging skin is a challenging issue that has not been thoroughly studied. Composite hydrogels made from natural polysaccharides have shown potential as dressings for various types of wounds. In this study, we prepared a polysaccharide-based composite hydrogel to provide a new strategy for treating aging skin wounds.
View Article and Find Full Text PDFBiotechniques
November 2024
Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
Current dorsal skin flap window chambers with flat glass windows are compatible with optical coherence tomography (OCT) and multiphoton microscopy (MPM) imaging. However, light sheet fluorescence microscopy (LSFM) performs best with a cylindrical or spherical sample located between its two 90° objectives and when all sample materials have the same index of refraction (). A modified window chamber with a domed viewing window made from fluorinated ethylene propylene (FEP), with n similar to water and tissue, was designed.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China. Electronic address:
Traditional tissue engineering strategies focus on geometrically static tissue scaffolds, lacking the dynamic capability found in native tissues. The emerging field of 4D bioprinting offers a promising method to address this challenge. However, the requirement for consistent exogenous supplementation of growth factors (GFs) during tissue maturation poses a significant obstacle for in vivo application of 4D bioprinted constructs.
View Article and Find Full Text PDFJ Cosmet Dermatol
December 2024
Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey.
Background: Injectable augmentation gels are widely used in the treatment of soft tissue. The composition of these gels has to be continuously improved due to the limitations of the currently available formulations.
Aims: This study focuses on the development of an innovative injectable gel designed to address current trends and specific needs within the field.
Bioact Mater
March 2025
Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.
Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!