Donor-to-donor variability in primary human organoid cultures has not been well characterized. As these cultures contain multiple cell types, there is greater concern that variability could lead to increased noise. In this work we investigated donor-to-donor variability in human gut adult stem cell (ASC) organoids. We examined intestinal developmental pathways during culture differentiation in ileum- and colon-derived cultures established from multiple donors, showing that differentiation patterns were consistent among cultures. This finding indicates that donor-to-donor variability in this system remains at a manageable level. Intestinal metabolic activity was evaluated by targeted analysis of central carbon metabolites and by analyzing hormone production patterns. Both experiments demonstrated similar metabolic functions among donors. Importantly, this activity reflected intestinal biology, indicating that these ASC organoid cultures are appropriate for studying metabolic processes. This work establishes a framework for generating high-confidence data using human primary cultures through thorough characterization of variability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452536PMC
http://dx.doi.org/10.1016/j.stemcr.2021.07.016DOI Listing

Publication Analysis

Top Keywords

donor-to-donor variability
16
organoid cultures
12
variability human
8
cultures
7
variability
6
assessing donor-to-donor
4
human
4
intestinal
4
human intestinal
4
intestinal organoid
4

Similar Publications

Quantifying glucose uptake at the single cell level with confocal microscopy reveals significant variability within and across individuals.

Sci Rep

January 2025

Applied Research and Technology, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, 60064, USA.

Measurement of glycated hemoglobin (HbA1c) in human red blood cells plays a critical role in the diagnosis and treatment of diabetes mellitus. However, recent studies have suggested large variation in the relationship between average glucose levels and HbA1c, creating the need to understand glucose variability at the cellular level. Here, we devised a fluorescence-based method to quantitatively observe GLUT1-mediated intracellular glucose analog tracer uptake in individual RBCs utilizing microfluidics and confocal microscopy.

View Article and Find Full Text PDF

Heterotypic spheroids as a strategy for 3D culture of cryopreserved primary human hepatocytes in stirred-tank systems.

SLAS Discov

January 2025

iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157, Oeiras, Portugal. Electronic address:

Primary human hepatocytes (PHHs) are the preferred cell source to address liver function. Despite originating from the native tissue, one of the bottlenecks when using primary material is the donor-to-donor variability. Cryopreserved PHHs offer a high number of cells from the same donor and standardization of cell isolation and cryopreservation procedures, mitigating some of the inter-donor variability.

View Article and Find Full Text PDF

Corneal scarring, a significant cause of global blindness, results from various insults, including trauma, infections, and genetic disorders. The conventional treatment to replace scarred corneal tissues includes partial or full-thickness corneal transplantation using healthy donor corneas. However, only 1 in 70 individuals with treatable corneal scarring can undergo surgery, due to the limited supply of transplantable donor tissue.

View Article and Find Full Text PDF

Heterogeneity in Dental Tissue-Derived MSCs Revealed by Single-Cell RNA-seq.

J Dent Res

October 2024

Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria.

Mesenchymal stromal cells (MSCs) are multipotent, progenitor cells that reside in tissues across the human body, including the periodontal ligament (PDL) and gingiva. They are a promising therapeutic tool for various degenerative and inflammatory diseases. However, different heterogeneity levels caused by tissue-to-tissue and donor-to-donor variability, and even intercellular differences within a given MSCs population, restrict their therapeutic potential.

View Article and Find Full Text PDF

Metabolic modulation to improve MSC expansion and therapeutic potential for articular cartilage repair.

Stem Cell Res Ther

September 2024

Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore.

Article Synopsis
  • * Researchers explored how modifying the nutrients in culture media, specifically adding L-ascorbic acid-2-phosphate (AA), can enhance the chondrogenic potential of MSCs during their expansion phase, aiming to improve treatment outcomes.
  • * The results indicated that using AA improved the differentiation of MSCs into cartilage cells, reduced the number of senescent (aging) cells, and decreased cell variation, supporting more effective and consistent MSC therapy for patients with
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!