Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459317 | PMC |
http://dx.doi.org/10.1016/j.cell.2021.07.038 | DOI Listing |
Background: Availability of amyloid modifying therapies will dramatically increase the need for disclosure of Alzheimer's disease (AD) related genetic and/or biomarker test results. The 21st Century Cares Act requires the immediate return of most medical test results, including AD biomarkers. A shortage of genetic counselors and dementia specialists already exists, thus driving the need for scalable methods to responsibly communicate test results.
View Article and Find Full Text PDFBackground: Lecanemab is a humanized IgG1 monoclonal antibody that binds with high affinity to Aβ soluble protofibrils. In two clinical studies (phase 2, NCT01767311 and phase 3 ClarityAD, NCT03887455) in early Alzheimer's disease, lecanemab substantially reduced amyloid PET and significantly slowed clinical decline on multiple measures of cognition and function, including CDR-SB at 18 months. Models describing the change in amyloid PET and CDR-SB in response to lecanemab treatment were used to explore the impact of changing from the initial dosage regimen (10 mg/kg every 2 weeks [Q2W]) to a less intensive maintenance dosing regimen (10 mg/kg every 4 weeks [Q4W]) on clinical efficacy, and to explore the optimal duration of the initial dosing regimen.
View Article and Find Full Text PDFBackground: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.
View Article and Find Full Text PDFBackground: CT1812 is an experimental therapeutic sigma-2 receptor modulator in development for Alzheimer's disease (AD) and dementia with Lewy bodies. CT1812 reduces the affinity of Aβ oligomers to bind to neurons and exert synaptotoxic effects. This phase 2, multi-center, international, randomized, double-blind, placebo-controlled trial assessed safety, tolerability and effects of CT1812 on cognitive function in individuals with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
EQT Life Sciences Partners, Amsterdam, 1071 DV Amsterdam, Netherlands.
Background: Alzheimer's disease (AD) trials report a high screening failure rate (potentially eligible trial candidates who do not meet inclusion/exclusion criteria during screening) due to multiple factors including stringent eligibility criteria. Here, we report the main reasons for screening failure in the 12-week screening phase of the ongoing evoke (NCT04777396) and evoke+ (NCT04777409) trials of semaglutide in early AD.
Method: Key inclusion criteria were age 55-85 years; mild cognitive impairment due to AD (Clinical Dementia Rating [CDR] global score of 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!