Electrochemical Enabled Cascade Phosphorylation of N-H/O-H/S-H Bonds with P-H Compounds: An Efficient Access to P(O)-X Bonds.

Chemistry

Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China.

Published: October 2021

An electrochemical three component cascade phosphorylation reaction of various heteroatoms-containing nucleophiles including carbazoles, indoles, phenols, alcohols, and thiols with Ph PH has been established. Electricity is used as the "traceless" oxidant and water and air are utilized as the "green" oxygen source. All kinds of structurally diverse organophosphorus compounds with P(O)-N/P(O)-O/P(O)-S bonds are assembled in moderate to excellent yields (three categories of phosphorylation products, 50 examples, up to 97 % yield). A tentative free radical course is put forward to rationalize the reaction procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202102262DOI Listing

Publication Analysis

Top Keywords

cascade phosphorylation
8
electrochemical enabled
4
enabled cascade
4
phosphorylation n-h/o-h/s-h
4
n-h/o-h/s-h bonds
4
bonds p-h
4
p-h compounds
4
compounds efficient
4
efficient access
4
access po-x
4

Similar Publications

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

Organelle targeting is a useful approach in drug development for cancer therapy. Peptide amphiphiles are good candidates for targeting specific organelles because they can be engineered into a wide range of molecular structures, enabling customization for specific functional needs. We have developed a peptide amphiphile, C16-(EY)3, that can respond to tyrosine kinase activity and undergo phosphorylation inside cancer cells.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) ranks as the fourth leading cause of cancer-related deaths worldwide, with most patients diagnosed at advanced stages due to the absence of reliable early detection biomarkers.

Methods: RNA-sequencing was conducted to identify the differentially expressed genes between GC tissues and adjacent normal tissues. CCK8, EdU, colony formation, transwell, flow cytometry and xenograft assays were adopted to explore the biological function of ZBTB10 and betulinic acid (BA) in GC progression.

View Article and Find Full Text PDF

Leaf Extract Protects C2C12 Mouse Myoblasts Against the Suppressive Effects of Bisphenol-A on Myogenic Differentiation.

Int J Mol Sci

January 2025

Research Center for Non-Infectious Diseases and Environmental Health Sciences, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.

Recently, toxicological and epidemiological research has provided strong support for the unfavorable effects of bisphenol-A (BPA, 2,2'-bis(4-hydroxyphenyl) propane) on myogenesis and its underlying mechanisms. Researchers have therefore been looking for new strategies to prevent or mitigate these injurious effects of BPA on the human body. It has been found that plant extracts may act as potential therapeutic agents or functional foods, preventing human diseases caused by BPA.

View Article and Find Full Text PDF

Background: Casein kinase I protein Hrr25 plays important roles in many cellular processes, including autophagy, vesicular trafficking, ribosome biogenesis, mitochondrial biogenesis, and the DNA damage response in . Pin4 is a multi-phosphorylated protein that has been reported to be involved in the cell wall integrity (CWI) pathway and DNA damage response. Pin4 was reported to interact with Hrr25 in yeast two-hybrid and large-scale pulldown assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!