Assessing the relative importance of geographical and ecological drivers of evolution is paramount to understand the diversification of species and traits at the macroevolutionary scale. Here, we use an integrative approach, combining phylogenetics, biogeography, ecology and quantified phenotypes to investigate the drivers of both species and phenotypic diversification of the iconic Neotropical butterfly genus Morpho. We generated a time-calibrated phylogeny for all known species and inferred historical biogeography. We fitted models of time-dependent (accounting for rate heterogeneity across the phylogeny) and paleoenvironment-dependent diversification (accounting for global effect on the phylogeny). We used geometric morphometrics to assess variation of wing size and shape across the tree and investigated their dynamics of evolution. We found that the diversification of Morpho is best explained when considering variable diversification rates across the tree, possibly associated with lineages occupying different microhabitat conditions. First, a shift from understory to canopy was characterized by an increased speciation rate partially coupled with an increasing rate of wing shape evolution. Second, the occupation of dense bamboo thickets accompanying a major host-plant shift from dicotyledons towards monocotyledons was associated with a simultaneous diversification rate shift and an evolutionary 'jump' of wing size. Our study points to a diversification pattern driven by punctuational ecological changes instead of a global driver or biogeographic history.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeb.13921DOI Listing

Publication Analysis

Top Keywords

punctuational ecological
8
ecological changes
8
changes global
8
diversification
8
wing size
8
global factors
4
factors drive
4
species
4
drive species
4
species diversification
4

Similar Publications

Darwin attributed the absence of species transitions in the fossil record to his hypothesis that speciation occurs within isolated habitat patches too geographically restricted to be captured by fossil sequences. Mayr's peripatric speciation model added that such speciation would be rapid, further explaining missing evidence of diversification. Indeed, Eldredge and Gould's original punctuated equilibrium model combined Darwin's conjecture, Mayr's model and 124 years of unsuccessfully sampling the fossil record for transitions.

View Article and Find Full Text PDF

Seagrasses are marine flowering plants that inhabit shallow coastal and estuarine waters and serve vital ecological functions in marine ecosystems. However, seagrass ecosystems face the looming threat of degradation, necessitating effective monitoring. Remote-sensing technology offers significant advantages in terms of spatial coverage and temporal accessibility.

View Article and Find Full Text PDF

Growth Quakes and Stasis Using Iterations of Inflating Complex Random Matrices.

Entropy (Basel)

October 2023

Laboratoire Charles Fabry, IOGS, Université Paris-Saclay, 2 Av. Fresnel, 91120 Palaiseau, France.

I extend to the case of complex matrices, rather than the case of real matrices as in a prior study, a method of iterating the operation of an "inflating random matrix" onto a state vector to describe complex growing systems. I show that the process also describes in this complex case a punctuated growth with quakes and stasis. I assess that under one such inflation step, the vector will shift to a really different one (quakes) only if the inflated matrix has sufficiently dominant new eigenvectors.

View Article and Find Full Text PDF

How Turing parasites expand the computational landscape of digital life.

Phys Rev E

October 2023

ICREA-Complex Systems Lab, Universitat Pompeu Fabra (GRIB), Dr Aiguader 80, 08003 Barcelona, Spain.

Why are living systems complex? Why does the biosphere contain living beings with complexity features beyond those of the simplest replicators? What kind of evolutionary pressures result in more complex life forms? These are key questions that pervade the problem of how complexity arises in evolution. One particular way of tackling this is grounded in an algorithmic description of life: living organisms can be seen as systems that extract and process information from their surroundings to reduce uncertainty. Here we take this computational approach using a simple bit string model of coevolving agents and their parasites.

View Article and Find Full Text PDF

The theory of punctuated equilibrium (PE) was developed a little over 50 years ago to explain long-term, large-scale appearance and disappearance of species in the fossil record. A theory designed specifically for that purpose cannot be expected, out of the box, to be directly applicable to biocultural evolution, but in revised form, PE offers a promising approach to incorporating not only a wealth of recent empirical research on genetic, linguistic, and technological evolution but also large databases that document human biological and cultural diversity across time and space. Here we isolate the fundamental components of PE and propose which pieces, when reassembled or renamed, can be highly useful in evolutionary anthropology, especially as humanity faces abrupt ecological challenges on an increasingly larger scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!