Copper complexes with different ligands (ethylenediaminetetraacetic acid, EDTA, ammonium citrate tribasic, TAC, and alanine, ALA) were studied in aqueous solutions and hydrogels with the aim of setting the optimal conditions for copper stain removal from marble by agar gels, with damage minimization. The stoichiometry and stability of copper complexes were monitored by ultraviolet-visible (UV-Vis) spectroscopy and the symmetry of Cu(II) centers in the different gel formulations was studied by electron paramagnetic resonance (EPR) spectroscopy. Cleaning effectiveness in optimized conditions was verified on marble laboratory specimens through color variations and by determining copper on gels by inductively coupled plasma-mass spectrometry (ICP-MS). Two copper complexes with TAC were identified, one having the known stoichiometry 1:1, and the other 1:2, Cu(TAC), never observed before. The stability of all the complexes at different pH was observed to increase with pH. At pH 10.0, the gel's effectiveness in removing copper salts from marble was the highest in the presence of ALA, followed by EDTA, TAC, and pure agar gel. Limited damage to the marble surface was observed when gels with added EDTA and TAC were employed, whereas agar gel with ALA was determined to be the most efficient and safe cleaning material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395995PMC
http://dx.doi.org/10.3390/gels7030111DOI Listing

Publication Analysis

Top Keywords

copper complexes
12
copper stain
8
stain removal
8
removal marble
8
agar gels
8
edta tac
8
agar gel
8
copper
6
marble
5
complexes
5

Similar Publications

The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.

View Article and Find Full Text PDF

Versatile applications of cobalt and copper complexes of biopolymeric Schiff base ligands derived from chitosan.

Int J Biol Macromol

January 2025

Catalytic Applications Laboratory, Department of Chemistry, School of Basic Sciences, Faculty of Science, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India. Electronic address:

In the present study, biopolymeric Schiff base (SB) ligands were synthesized from chitosan and isatin. Consequently, their earth abundant transition metal complexes of cobalt and copper were synthesized. All compounds were extensively characterized using FTIR and UV spectroscopy, thermo-gravimetric (TG) analysis, X-ray powder diffraction (XRD) and FESEM (field emission scanning electron microscopy).

View Article and Find Full Text PDF

Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.

View Article and Find Full Text PDF

is a major contributor to infections in humans and is widely distributed in the environment. It is capable of aerobic and anaerobic growth, providing adaptability to environmental changes and in confronting immune responses. We applied high-throughput native 2-dimensional metalloproteomics to under oxic and anoxic conditions.

View Article and Find Full Text PDF

Background Hysteroscopy, a minimally invasive procedure for diagnosing and treating intrauterine pathologies, can be challenging due to inadequate cervical dilation, leading to procedural difficulties and patient discomfort. Misoprostol, a synthetic prostaglandin E1 analog, is increasingly used for cervical ripening to ease hysteroscopic procedures. Objective To evaluate the efficacy and safety of misoprostol for cervical ripening prior to hysteroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!