Gut microbiota as the critical correlation of polycystic ovary syndrome and type 2 diabetes mellitus.

Biomed Pharmacother

Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China. Electronic address:

Published: October 2021

Gut microbiota forms a symbiotic relationship with the host and maintains the ecological balance of the internal and external environment of the human body. However, dysbiosis of the gut microbiota and immune deficiency, as well as environmental changes, can destroy the host-microbial balance, leading to the occurrence of a variety of diseases, such as polycystic ovary syndrome (PCOS), type 2 diabetes mellitus (T2DM), and obesity. Meanwhile, diseases can also affect gut microbiota, forming a vicious cycle. The role of the intestinal microbiota in different diseases have been proven by several studies; however, as a common target of PCOS and T2DM, there are few reports on the treatment of different diseases through the regulation of intestinal microbiota as the critical correlation. This review analyzed the common mechanisms of intestinal microbiota in PCOS and T2DM, including the dysbiosis of gut microbiota, endotoxemia, short-chain fatty acids, biotransformation of bile acids, and synthesis of amino acid in regulating insulin resistance, obesity, chronic inflammation, and mitochondrial dysfunction. The possible therapeutic effects of probiotics and/or prebiotics, fecal microbiota transplantation, bariatric surgery, dietary intervention, drug treatment, and other treatments targeted at regulating intestinal microbiota were also elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2021.112094DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
intestinal microbiota
16
microbiota
9
microbiota critical
8
critical correlation
8
polycystic ovary
8
ovary syndrome
8
type diabetes
8
diabetes mellitus
8
dysbiosis gut
8

Similar Publications

The effects of the gut bacterial product, gassericin A, on obesity in mice.

Lipids Health Dis

January 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.

Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.

View Article and Find Full Text PDF

Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.

Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.

View Article and Find Full Text PDF

Purpose Of Review: The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy.

View Article and Find Full Text PDF

Purpose Of Review: The review aims to address the knowledge gap and promote the widespread adoption of quinoa as a functional food for improving metabolic health. By presenting a comprehensive overview of its nutritional profile and bioactive components, the review aims to increase consumers' awareness of the potential therapeutic benefits of incorporating quinoa into diets.

Recent Findings: Recent studies have highlighted the diverse range of bioactive compounds in quinoa, such as phytosterols, saponins, phenolic acids, phytoecdysteroids, and betalains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!