Geometrical → alkene isomerization is intimately entwined in the historical fabric of organic photochemistry and is enjoying a renaissance (Roth et al. , 1193-1207). This is a consequence of the fundamental stereochemical importance of -alkenes, juxtaposed with frustrations in thermal reactivity that are rooted in microscopic reversibility. Accessing excited state reactivity paradigms allow this latter obstacle to be circumnavigated by exploiting subtle differences in the photophysical behavior of the substrate and product chromophores: this provides a molecular basis for directionality. While direct irradiation is operationally simple, photosensitization via selective energy transfer enables augmentation of the alkene repertoire to include substrates that are not directly excited by photons. Through sustained innovation, an impressive portfolio of tailored small molecule catalysts with a range of triplet energies are now widely available to facilitate -thermodynamic and thermo-neutral isomerization reactions to generate -alkene fragments. This review is intended to serve as a practical guide covering the geometric isomerization of alkenes enabled by energy transfer catalysis from 2000 to 2020, and as a logical sequel to the excellent treatment by Dugave and Demange (. , 2475-2532). The mechanistic foundations underpinning isomerization selectivity are discussed together with induction models and rationales to explain the counterintuitive directionality of these processes in which very small energy differences distinguish substrate from product. Implications for subsequent stereospecific transformations, application in total synthesis, regioselective polyene isomerization, and spatiotemporal control of pre-existing alkene configuration in a broader sense are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.1c00324 | DOI Listing |
J Vis Exp
December 2024
Department of Ophthalmology and Visual Neurosciences, University of Minnesota;
G protein-coupled receptors (GPCRs) are a superfamily of transmembrane proteins that initiate signaling cascades through activation of its G protein upon association with its ligand. In all mammalian vision, rhodopsin is the GPCR responsible for the initiation of the phototransduction cascade. Within photoreceptors, rhodopsin is bound to its chromophore 11-cis-retinal and is activated through the light-sensitive isomerization of 11-cis-retinal to all-trans-retinal, which activates the transducin G protein, resulting in the phototransduction cascade.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry, The Scripps Research Institute 10550N. Torrey Pines Road, La Jolla CA 92037 USA
Catalytic alkene isomerization is a powerful synthetic strategy for preparing valuable internal alkenes from simple feedstocks. The utility of olefin isomerization hinges on the ability to control both positional and stereoisomerism to access a single product among numerous potential isomers. Within base-metal catalysis, relatively little is known about how to modulate reactivity and selectivity with group 6 metal-catalyzed isomerization.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.
We present a six-step cascade that converts 1,3-distyrylbenzenes (-stilbenes) into nonsymmetric pyrenes in 40-60% yields. This sequence merges photochemical steps, ,-alkene isomerization, a 6π photochemical electrocyclization (Mallory photocyclization); the new bay region cyclization, with two radical iodine-mediated aromatization steps; and an optional aryl migration. This work illustrates how the inherent challenges of engineering excited state reactivity can be addressed by logical design.
View Article and Find Full Text PDFOrg Lett
January 2025
Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.
Aerobic nitro-nitrite isomerization of secondary nitroalkanes is postulated to proceed via the intermediacy of the α-nitro alkyl radical, where the corresponding Nef-type products, ketones, and nitrogen monoxide can be obtained as byproducts. To explore the catalytic aerobic carbooximation of alkenes using secondary nitroalkanes, phase-transfer catalysis of KSeCN and TBAI has been developed. The current aerobic carbooximation of alkenes utilizes nitroalkanes as both radical and nitrogen monoxide sources in water without external oxidants and prefunctionalized nitroalkanes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!