Potato bacterial wilt is caused by the devastating bacterial pathogen Ralstonia solanacearum. Quantitative resistance to this disease has been and is currently introgressed from a number of wild relatives into cultivated varieties through laborious breeding programs. Here, we present two methods that we have developed to facilitate the screening for resistance to bacterial wilt in potato. The first one uses R. solanacearum reporter strains constitutively expressing the luxCDABE operon or the green fluorescent protein (gfp) to follow pathogen colonization in potato germplasm. Luminescent strains are used for nondestructive live imaging, while fluorescent ones enable precise pathogen visualization inside the plant tissues through confocal microscopy. The second method is a BIO-multiplex-PCR assay that is useful for sensitive and specific detection of viable R. solanacearum (IIB-1) cells in latently infected potato plants. This BIO-multiplex-PCR assay can specifically detect IIB-1 sequevar strains as well as strains belonging to all four R. solanacearum phylotypes and is sensitive enough to detect without DNA extraction ten bacterial cells per mL in complex samples.The described methods allow the detection of latent infections in roots and stems of asymptomatic plants and were shown to be efficient tools to assist potato breeding programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1609-3_18 | DOI Listing |
Microorganisms
November 2024
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China.
Sunflower Wilt (SVW) caused by is a significant threat to sunflower production in China. This soilborne disease is difficult to control. It has been observed that delayed sowing reduces the severity of SVW on different varieties and across various locations.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China.
A bacterial strain, designated as A6, was isolated from the rhizosphere soil of a healthy muskmelon in Wenchang, Hainan Province, China. The cells of strain A6 were Gram-negative, aerobic, short rod and motile with a single polar flagellum. Strain A6 could tolerate up to 55.
View Article and Find Full Text PDFPhytopathology
January 2025
Virginia Polytechnic Institute and State University, School of Plant and Environmental Science, Blacksburg, Virginia, United States;
Mar Drugs
November 2024
Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.
View Article and Find Full Text PDFFront Microbiol
December 2024
Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, India.
The increasing health and environmental risks associated with synthetic chemical pesticides necessitate the exploration of safer, sustainable alternatives for plant protection. This study investigates a novel biosynthesized antimicrobial peptide (AMP) from strain IT, identified as the amino acid chain PRKGSVAKDVLPDPVYNSKLVTRLINHLMIDGKRG, for its efficacy in controlling bacterial wilt (BW) disease in tomato () caused by . Our research demonstrates that foliar application of this AMP at a concentration of 200 ppm significantly reduces disease incidence by 49.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!