Purpose: Total parental nutrition (TPN) causes gastrointestinal mucosal atrophy. The present study investigated the effects of hepatocyte growth factor (HGF) on the intestinal mucosal atrophy induced by TPN.
Methods: Rats underwent jugular vein catheterization and were divided into four groups: oral feeding (OF), TPN alone (TPN), TPN plus low-dose HGF (0.3 mg/kg/day; TPNLH), and TPN plus high-dose HGF (1.0 mg/kg/day; TPNHH). On day 7, rats were euthanized, and the small intestine was harvested and evaluated histologically. The expression of c-MET, a receptor of HGF, and nutrition transporter protein were evaluated using quantitative polymerase chain reaction.
Results: The jejunal villus height (VH) and absorptive mucosal surface area in the TPNHH group were significantly higher than in the TPN group (p < 0.05). The VH in the ileum showed the same trend only in the TPNHH group, albeit without statistical significance. The crypt cell proliferation rate (CCPR) of the jejunum in both HGF-treated groups was significantly higher than in the TPN group (p < 0.01). The expression of c-MET and transporter protein in all TPN-treated groups was decreased compared with that in the OF group.
Conclusion: HGF attenuated TPN-associated intestinal mucosal atrophy by increasing the villus height, which was associated with an increase in CCPR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563669 | PMC |
http://dx.doi.org/10.1007/s00383-021-05002-0 | DOI Listing |
Dig Dis Sci
January 2025
Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Location AMC, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
Aims: Duodenal Mucosal Resurfacing (DMR) is an endoscopic ablation technique aimed at improving glycemia in patients with type 2 diabetes mellitus (T2DM). Although the exact underlying mechanism is still unclear, it is postulated that the DMR-induced improvements are the result of changes in the duodenal mucosa. For this reason, we assessed macroscopic and microscopic changes in the duodenal mucosa induced by DMR + GLP-1RA.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Laboratorio de Vacunas Veterinarias, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile.
Immunization against Gonadotropin-Releasing Hormone (GnRH) has been successfully explored and developed for the parenteral inoculation of animals, aimed at controlling fertility, reducing male aggressiveness, and preventing boar taint. Although effective, these vaccines may cause adverse reactions at the injection site, including immunosuppression and inflammation, as well as the involvement of laborious and time-consuming procedures. Oral vaccines represent an advancement in antigen delivery technology in the vaccine industry.
View Article and Find Full Text PDFNutrients
December 2024
Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
Intestinal aging is characterized by declining protein homeostasis via reduced proteasome activity, which are hallmarks of age-related diseases. Our previous study showed that caffeine intake improved intestinal integrity with age by reducing vitellogenin (VIT, yolk protein) in . In this study, we investigated the regulatory mechanisms by which caffeine intake improves intestinal integrity and reduces vitellogenin (VIT) production in aged .
View Article and Find Full Text PDFPoult Sci
December 2024
MOA Key Laboratory of Animal Virology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China. Electronic address:
J Mol Histol
January 2025
Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 51014, Tartu, Estonia.
Celiac disease (CD) is a chronic autoimmune disease of the small bowel mucosa that develops because of the altered immune response to gluten, which leads to intestinal epithelium damage and villous atrophy. However, studies on regeneration of the damaged small bowel mucosa and density of intestinal stem cells (ISC) in CD persons are still scarce. We aimed to evaluate the number of small bowel mucosa cells positive for LGR5, CD138/Syndecan-1, CD71 and CXCR3 in CD and in controls with normal bowel mucosa; to find relationship between these markers and degree of small intestinal atrophy and to compare these results with our previous data about the number of CD103 + , IDO + DCs, FOXP3 + Tregs, enterovirus (EV) density and serum zonulin level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!